Skip to main content

Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Long-lived charge carriers are necessary to initiate redox reactions on photocatalyst surfaces. The ideal photocatalyst should have charge carriers with fast mobility and low recombination rates, or good “charge carrier management”. Being able to predict such behavior means that new materials with desired properties can be discovered. It is necessary to understand the principles of such processes further to enable rationale catalyst design and to advance the science of photocatalysis. We review theoretical approaches to model charge transport (both band and polaron transport), as well as efforts to model charge recombination. The chapter focuses on the use of ab initio electronic structure methods, but also discusses how mesoscale modeling can provide spatial and temporal details on charge transport. We also review efforts to improve charge separation and mobility in semiconductor materials through the use of novel structures, such as heterostructures or controlled doping, and how such structures can be modeled. Theory has been essential to the field of photocatalysis and will continue to drive development of materials with improved charge transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis, N.S., Crabtree, G.: Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005. Tech. Rep. US Department of Energy, Office of Basic Energy Science (2005)

    Google Scholar 

  2. Maeda, K., Teramura, K., Lu, D.L., Takata, T., Saito, N., Inoue, Y., Domen, K.: Photocatalyst releasing hydrogen from water – enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature. 440, 295–295 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Kim, H.G., Hwang, D.W., Lee, J.S.: An undoped, single-phase oxide photocatalyst working under visible light. J. Am. Chem. Soc. 126, 8912–8913 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Chen, X., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 331, 746–750 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A. 3, 2485–2534 (2015)

    Article  CAS  Google Scholar 

  6. Pan, H.: Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting. Renew. Sust. Energ. Rev. 57, 584–601 (2016)

    Article  CAS  Google Scholar 

  7. Ryabchuk, K.V., Kuznetsov, N.V., Emeline, V.A., Artem’ev, M.Y., Kataeva, V.G., Horikoshi, S., Serpone, N.: Water will be the coal of the future—the untamed dream of Jules Verne for a solar fuel. Molecules. 21 (2016)

    Google Scholar 

  8. Roy, S.C., Varghese, O.K., Paulose, M., Grimes, C.A.: Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano. 4, 1259–1278 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., Kubiak, C.P.: Photochemical and photoelectrochemical reduction of Co2. Annu. Rev. Phys. Chem. 63, 541–569 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Li, K., An, X., Park, K.H., Khraisheh, M., Tang, J.: A critical review of CO2 photoconversion: catalysts and reactors. Catal. Today. 224, 3–12 (2014)

    Article  CAS  Google Scholar 

  11. Yuan, L., Xu, Y.-J.: Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 342, 154–167 (2015)

    Article  CAS  Google Scholar 

  12. Gaya, U.I., Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev. 9, 1–12 (2008)

    Article  CAS  Google Scholar 

  13. Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., Hasnain Isa, M.: Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J. Ind. Eng. Chem. 26, 1–36 (2015)

    Article  CAS  Google Scholar 

  14. Huang, Y., Ho, S.S., Lu, Y., Niu, R., Xu, L., Cao, J., Lee, S.: Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules. 21 (2016)

    Google Scholar 

  15. Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Osterloh, F.E.: Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008)

    Article  CAS  Google Scholar 

  17. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37 (1972)

    Article  CAS  PubMed  Google Scholar 

  18. Xu, H., Ouyang, S., Liu, L., Reunchan, P., Umezawa, N., Ye, J.: Recent advances in TiO2-based photocatalysis. J. Mater. Chem. A. 2, 12642–12661 (2014)

    Article  CAS  Google Scholar 

  19. Henderson, M.A.: A surface science perspective on Tio2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)

    Article  CAS  Google Scholar 

  20. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W.: Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Cai, Y., Feng, Y.P.: Review on charge transfer and chemical activity of TiO2: mechanism and applications. Prog. Surf. Sci. 91, 183–202 (2016)

    Article  CAS  Google Scholar 

  22. Polman, A., Knight, M., Garnett, E.C., Ehrler, B., Sinke, W.C.: Photovoltaic materials: present efficiencies and future challenges. Science. 352 (2016)

    Google Scholar 

  23. Montoya, J.H., Seitz, L.C., Chakthranont, P., Vojvodic, A., Jaramillo, T.F., Norskov, J.K.: Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017)

    Article  CAS  Google Scholar 

  24. Huang, Z.F., Song, J.J., Pan, L., Zhang, X.W., Wang, L., Zou, J.J.: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27, 5309–5327 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. Mishra, M., Chun, D.M.: Alpha-Fe2O3 as a photocatalytic material: a review. Appl. Catalys. A-Gen. 498, 126–141 (2015)

    Article  CAS  Google Scholar 

  26. Grabowska, E.: Selected perovskite oxides: characterization, preparation and photocatalytic properties-a review. Appl. Catalys. B-Environ. 186, 97–126 (2016)

    Article  CAS  Google Scholar 

  27. Ansari, S.A., Khan, M.M., Ansaric, M.O., Cho, M.H.: Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 40, 3000–3009 (2016)

    Article  CAS  Google Scholar 

  28. Tolod, K.R., Hernandez, S., Russo, N.: Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts. 7, 13 (2017)

    Article  CAS  Google Scholar 

  29. Ong, C.B., Ng, L.Y., Mohammad, A.W.: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sust. Energ. Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  30. Maeda, K., Domen, K.: Development of novel photocatalyst and cocatalyst materials for water splitting under visible light. Bull. Chem. Soc. Jpn. 89, 627–648 (2016)

    Article  CAS  Google Scholar 

  31. Chen, S.S., Takata, T., Domen, K.: Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017)

    Article  CAS  Google Scholar 

  32. Xiang, Q.J., Cheng, B., Yu, J.G.: Graphene-based photocatalysts for solar-fuel generation. Angew. Chem.-Int. Ed. 54, 11350–11366 (2015)

    Article  CAS  Google Scholar 

  33. Li, J., Wu, N.: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Cat. Sci. Technol. 5, 1360–1384 (2015)

    Article  CAS  Google Scholar 

  34. Fernando, K.A.S., Sahu, S., Liu, Y.M., Lewis, W.K., Guliants, E.A., Jafariyan, A., Wang, P., Bunker, C.E., Sun, Y.P.: Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces. 7, 8363–8376 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T., Chai, S.P.: Graphitic carbon nitride (G-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. Rahman, M.Z., Kwong, C.W., Davey, K., Qiao, S.Z.: 2d phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9, 709–728 (2016)

    Article  CAS  Google Scholar 

  37. Zhang, G.G., Lan, Z.A., Wang, X.C.: Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem.-Int. Ed. 55, 15712–15727 (2016)

    Article  CAS  Google Scholar 

  38. Yu, H.J., Shi, R., Zhao, Y.F., Waterhouse, G.I.N., Wu, L.Z., Tung, C.H., Zhang, T.R.: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454–9477 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. Luo, B., Liu, G., Wang, L.Z.: Recent advances in 2D materials for photocatalysis. Nanoscale. 8, 6904–6920 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. Regulacio, M.D., Han, M.Y.: Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 49, 511–519 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Li, H., Li, J., Ai, Z.H., Jia, F.L., Zhang, L.Z.: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem.-Int. Ed. 57, 122–138 (2018)

    Article  CAS  Google Scholar 

  42. Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Garcia, H.: Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem. 6, 562–577 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. Lv, Z., Mahmood, N., Tahir, M., Pan, L., Zhang, X.W., Zou, J.J.: Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale. 8, 18250–18269 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, K., Guo, L.J.: Metal sulphide semiconductors for photocatalytic hydrogen production. Cat. Sci. Technol. 3, 1672–1690 (2013)

    Article  CAS  Google Scholar 

  45. Moriya, Y., Takata, T., Domen, K.: Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 257, 1957–1969 (2013)

    Article  CAS  Google Scholar 

  46. Ye, L.Q., Tian, L.H., Peng, T.Y., Zan, L.: Synthesis of highly symmetrical BiOI single-crystal nanosheets and their {001} facet-dependent photoactivity. J. Mater. Chem. 21, 12479–12484 (2011)

    Article  CAS  Google Scholar 

  47. Dong, S.Y., Feng, J.L., Fan, M.H., Pi, Y.Q., Hu, L.M., Han, X., Liu, M.L., Sun, J.Y., Sun, J.H.: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv. 5, 14610–14630 (2015)

    Article  CAS  Google Scholar 

  48. Banerjee, S., Dionysiou, D.D., Pillai, S.C.: Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catalys. B-Environ. 176, 396–428 (2015)

    Article  CAS  Google Scholar 

  49. Mehrjouei, M., Muller, S., Moller, D.: A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209–219 (2015)

    Article  CAS  Google Scholar 

  50. Wang, W.J., Li, G.Y., Xia, D.H., An, T.C., Zhao, H.J., Wong, P.K.: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ. Sci.-Nano. 4, 782–799 (2017)

    Article  CAS  Google Scholar 

  51. Moniz, S.J.A., Shevlin, S.A., Martin, D.J., Guo, Z.X., Tang, J.W.: Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ. Sci. 8, 731–759 (2015)

    Article  CAS  Google Scholar 

  52. Ager, J.W., Shaner, M.R., Walczak, K.A., Sharp, I.D., Ardo, S.: Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015)

    Article  CAS  Google Scholar 

  53. Roger, I., Shipman, M.A., Symes, M.D.: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017)

    Article  CAS  Google Scholar 

  54. Jiang, C.R., Moniz, S.J.A., Wang, A.Q., Zhang, T., Tang, J.W.: Photoelectrochemical devices for solar water splitting – materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. Joy, J., Mathew, J., George, S.C.: Nanomaterials for photoelectrochemical water splitting – review. Int. J. Hydrog. Energy. 43, 4804–4817 (2018)

    Article  CAS  Google Scholar 

  56. White, J.L., Baruch, M.F., Pander, J.E., Hu, Y., Fortmeyer, I.C., Park, J.E., Zhang, T., Liao, K., Gu, J., Yan, Y., Shaw, T.W., Abelev, E., Bocarsly, A.B..: Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. Li, K., Peng, B.S., Peng, T.Y.: Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6, 7485–7527 (2016)

    Article  CAS  Google Scholar 

  58. Chen, X.Z., Li, N., Kong, Z.Z., Ong, W.J., Zhao, X.J.: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater. Horiz. 5, 9–27 (2018)

    Article  CAS  Google Scholar 

  59. Zeng, S., Kar, P., Thakur, U.K., Shankar, K.: A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology. 29, 052001 (2018)

    Article  PubMed  CAS  Google Scholar 

  60. Peter, L.M.: Chapter 1 Photoelectrochemistry: from basic principles to photocatalysis. In: Photocatalysis: Fundamentals and Perspectives, pp. 1–28. The Royal Society of Chemistry (2016). https://doi.org/10.1039/9781782622338-00001

    Chapter  Google Scholar 

  61. Arora, N.D., Hauser, J.R., Roulston, D.J.: Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Transact. Elect. Dev. 29, 292–295 (1982)

    Article  Google Scholar 

  62. Kasap, S., Koughia, C., Ruda, H.E.: Electrical conduction in metals and semiconductors. In: Kasap, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, p. 1. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-48933-9_2

    Chapter  Google Scholar 

  63. Rettie, A.J.E., Chemelewski, W.D., Emin, D., Mullins, C.B.: Unravelling small-polaron transport in metal oxide photoelectrodes. J. Phys. Chem. Lett. 7, 471–479 (2016)

    Article  CAS  PubMed  Google Scholar 

  64. Abdi, F.F., Savenije, T.J., May, M.M., Dam, B., van de Krol, R.: The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752–2757 (2013)

    Article  CAS  Google Scholar 

  65. Tsuda, N.: Electronic conduction in oxides. Springer (1991)

    Book  Google Scholar 

  66. Sze, S.M.: Semiconductor Devices: Physics and Technology. John Wiley & Sons Singapore Pte Limited (2012)

    Google Scholar 

  67. Giesecke, J.A., Schubert, M.C., Walter, D., Warta, W.: Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence. Appl. Phys. Lett. 97, 092109 (2010)

    Article  CAS  Google Scholar 

  68. Zhong, D.K., Choi, S., Gamelin, D.R.: Near-complete suppression of surface recombination in solar photoelectrolysis by “co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133, 18370–18377 (2011)

    Article  CAS  PubMed  Google Scholar 

  69. Barroso, M., Mesa, C.A., Pendlebury, S.R., Cowan, A.J., Hisatomi, T., Sivula, K., Grätzel, M., Klug, D.R., Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. U. S. A. 109, 15640–15645 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  71. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  72. Jain, A., Shin, Y., Persson, K.A.: Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016)

    Article  CAS  Google Scholar 

  73. Ann, E.M., Peter, A.S., Michael, P.D., Thomas, R.M., Kevin, L.: Designing meaningful density functional theory calculations in materials science—a primer. Model. Simul. Mater. Sci. Eng. 13, R1 (2005)

    Article  CAS  Google Scholar 

  74. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for Ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  CAS  Google Scholar 

  75. Kresse, G., Furthmüller, J.: Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996)

    Article  CAS  Google Scholar 

  76. Sholl, D., Steckel, J.A.: Density Functional Theory: A Practical Introduction. Wiley (2011)

    Google Scholar 

  77. Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2004)

    Book  Google Scholar 

  78. Giustino, F.: Materials Modelling Using Density Functional Theory: Properties and Predictions. Oxford University Press (2014)

    Google Scholar 

  79. Perdew, J.P., Ruzsinszky, A., Tao, J., Staroverov, V.N., Scuseria, G.E., Csonka, G.I.: Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J. Chem. Phys. 123, 062201 (2005)

    Article  CAS  Google Scholar 

  80. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  PubMed  Google Scholar 

  81. Lany, S., Zunger, A.: Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B. 78, 235104 (2008)

    Article  CAS  Google Scholar 

  82. Stephan, L., Alex, Z.: Accurate prediction of defect properties in density functional supercell calculations. Model. Simul. Mater. Sci. Eng. 17, 084002 (2009)

    Article  CAS  Google Scholar 

  83. Freysoldt, C., Neugebauer, J., Van de Walle, C.G.: Electrostatic interactions between charged defects in supercells. Phys. Status Solidi B. 248, 1067–1076 (2010)

    Article  CAS  Google Scholar 

  84. Freysoldt, C., Neugebauer, J., Van de Walle, C.G.: Fully Ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009)

    Article  PubMed  CAS  Google Scholar 

  85. Komsa, H.-P., Rantala, T.T., Pasquarello, A.: Finite-size supercell correction schemes for charged defect calculations. Phys. Rev. B. 86, 045112 (2012)

    Article  CAS  Google Scholar 

  86. Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., Van de Walle, C.G.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014)

    Article  Google Scholar 

  87. Pacchioni, G.: Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. J. Chem. Phys. 128, 182505 (2008)

    Article  PubMed  CAS  Google Scholar 

  88. Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J.: Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007)

    Article  CAS  Google Scholar 

  89. Cohen, A.J., Mori-Sánchez, P., Yang, W.: Insights into current limitations of density functional theory. Science. 321, 792 (2008)

    Article  CAS  PubMed  Google Scholar 

  90. Finazzi, E., Di Valentin, C., Pacchioni, G., Selloni, A.: Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations. J. Chem. Phys. 129, 154113 (2008)

    Article  PubMed  CAS  Google Scholar 

  91. Wang, F., Di Valentin, C., Pacchioni, G.: Semiconductor-to-metal transition in WO3: nature of the oxygen vacancy. Phys. Rev. B. 84, 073103 (2011)

    Article  CAS  Google Scholar 

  92. Di Valentin, C., Pacchioni, G., Selloni, A.: Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys. Rev. Lett. 97, 166803 (2006)

    Article  PubMed  CAS  Google Scholar 

  93. Liechtenstein, A.I., Anisimov, V.I., Zaanen, J.: Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B. 52, R5467–R5470 (1995)

    Article  CAS  Google Scholar 

  94. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B. 57, 1505–1509 (1998)

    Article  CAS  Google Scholar 

  95. Tolba, S.A., Gameel, K.M., Ali, B.A., Almossalami, H.A., Allam, N.K.: The DFT+ U: Approaches, Accuracy, and Applications. IntechOpenAvailable from: https://www.intechopen.com/books/density-functional-calculations-recent-progresses-of-theory-and-application/the-dft-u-approaches-accuracy-and-applications (2018)

    Google Scholar 

  96. Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E.: Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006)

    Article  PubMed  CAS  Google Scholar 

  97. Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996)

    Article  CAS  Google Scholar 

  98. Du, M.-H., Zhang, S.B.: Impurity-bound small polarons in ZnO: hybrid density functional calculations. Phys. Rev. B. 80, 115217 (2009)

    Article  CAS  Google Scholar 

  99. Deák, P., Aradi, B., Frauenheim, T.: Polaronic effects in TiO2 calculated by the HSE06 hybrid functional: dopant passivation by carrier self-trapping. Phys. Rev. B. 83, 155207 (2011)

    Article  CAS  Google Scholar 

  100. Ong, S.P., Chevrier, V.L., Ceder, G.: Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys. Rev. B. 83, 075112 (2011)

    Article  CAS  Google Scholar 

  101. Hermann, J., DiStasio, R.A., Tkatchenko, A.: First-principles models for Van Der Waals interactions in molecules and materials: concepts, theory, and applications. Chem. Rev. 117, 4714–4758 (2017)

    Article  CAS  PubMed  Google Scholar 

  102. Grimme, S., Hansen, A., Brandenburg, J.G., Bannwarth, C.: Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016)

    Article  CAS  PubMed  Google Scholar 

  103. Reining, L.: The Gw approximation: content, successes and limitations. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1344 (2017)

    Google Scholar 

  104. Leng, X., Jin, F., Wei, M., Ma, Y.: GW method and Bethe–Salpeter equation for calculating electronic excitations. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6, 532–550 (2016)

    CAS  Google Scholar 

  105. Marcus, R.A., Sutin, N.: Electron transfers in chemistry and biology. Biochim. Biophys. Acta. 811, 265–322 (1985)

    Article  CAS  Google Scholar 

  106. Marcus, R.A.: Electron-transfer reactions in chemistry – theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993)

    Article  CAS  Google Scholar 

  107. Emin, D., Holstein, T.: Studies of small polaron motion. 4. Adiabatic theory of hall effects. Ann. Phys. 53, 439–520 (1969)

    Article  Google Scholar 

  108. Holstein, T.: Studies of polaron motion part I. the molecular-crystal model (reprinted from Annals of Physics, Vol 8, Pg 325-342, 1959). Ann. Phys. 281, 706–724 (2000)

    Article  CAS  Google Scholar 

  109. Holstein, T.: Studies of polaron motion part II. The “small” polaron (reprinted from annals of physics, Vol 8, Pg 343-389, 1959). Ann. Phys. 281, 725–773 (2000)

    Article  CAS  Google Scholar 

  110. Austin, I.G., Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757–812 (2001)

    Article  Google Scholar 

  111. Bogomolov, V.N., Kudinov, E.K., Firsov, Y.A.: Polaron nature of current carriers in rutile (TiO2). Soviet Physics Solid State,Ussr. 9, 2502−+ (1968)

    Google Scholar 

  112. Bogomolov, V.N., Kudinov, E.K., Mirlin, D.N., Firsov, Y.A.: Polaron mechanism of light absorption in rutile crystals (TiO2). Soviet Physics Solid State,Ussr. 9, 1630−+ (1968)

    Google Scholar 

  113. Emin, D.: Polarons, 1st edn. Cambridge University Press, New York (2013)

    Google Scholar 

  114. Hautier, G., Miglio, A., Ceder, G., Rignanese, G.M., Gonze, X.: Identification and design principles of low hole effective mass P-type transparent conducting oxides. Nat. Commun. 4, 2292–2298 (2013)

    Article  PubMed  CAS  Google Scholar 

  115. Hautier, G., Miglio, A., Waroquiers, D., Rignanese, G.-M., Gonze, X.: How does chemistry influence electron effective mass in oxides? A high-throughput computational analysis. Chem. Mater. 26, 5447–5458 (2014)

    Article  CAS  Google Scholar 

  116. Reticcioli, M., Diebold, U., Kresse, G., Franchini, C.: Small polarons in transition metal oxides. In: Andreoni, W., Yip, S. (eds.) Handbook of Materials Modeling: Applications: Current and Emerging Materials, pp. 1–39. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-50257-1_52-1

    Chapter  Google Scholar 

  117. Muñoz Ramo, D., Shluger, A.L., Gavartin, J.L., Bersuker, G.: Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys. Rev. Lett. 99, 155504 (2007)

    Article  PubMed  CAS  Google Scholar 

  118. Nagaraja, A.R., Perry, N.H., Mason, T.O., Tang, Y., Grayson, M., Paudel, T.R., Lany, S., Zunger, A.: Band or polaron: the hole conduction mechanism in the P-type spinel Rh2ZnO4. J. Am. Ceram. Soc. 95, 269–274 (2012)

    Article  CAS  Google Scholar 

  119. Janotti, A., Franchini, C., Varley, J., Kresse, G., Van de Walle, C.: Dual behavior of excess electrons in rutile TiO2, physica status solidi. (RRL)–Rapid Res. Lett. 7, 199–203 (2013)

    CAS  Google Scholar 

  120. Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite alpha-Fe2O3. J. Chem. Phys. 122, 144305 (2005)

    Article  CAS  PubMed  Google Scholar 

  121. Deskins, N.A., Dupuis, M.: Electron transport via polaron hopping in bulk TiO2: a density functional theory characterization. Phys. Rev. B. 75, 195212–195221 (2007)

    Article  CAS  Google Scholar 

  122. Deskins, N.A., Dupuis, M.: Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C. 113, 346–358 (2009)

    Article  CAS  Google Scholar 

  123. Rosso, K.M., Dupuis, M.: Electron transfer in environmental systems: a frontier for theoretical chemistry. Theor. Chem. Accounts. 116, 124–136 (2006)

    Article  CAS  Google Scholar 

  124. Rosso, K.M., Smith, D.M.A., Dupuis, M.: An Ab initio model of electron transport in hematite (α-Fe2O3) basal planes. J. Chem. Phys. 118, 6455–6466 (2003)

    Article  CAS  Google Scholar 

  125. Emin, D., Holstein, T.: Adiabatic theory of hall mobility of small polaron in hopping regime. Bull. Am. Phys. Soc. 13, 464 (1968)

    Google Scholar 

  126. Liu, T., Dupuis, M., Li, C.: Band structure engineering: insights from defects, band gap, and electron mobility, from study of Magnesium Tantalate. J. Phys. Chem. C. 120, 6930–6937 (2016)

    Article  CAS  Google Scholar 

  127. Spreafico, C., VandeVondele, J.: The nature of excess electrons in anatase and rutile from hybrid DFT and RPA. Phys. Chem. Chem. Phys. 16, 26144–26152 (2014)

    Article  CAS  PubMed  Google Scholar 

  128. Miyata, K., Meggiolaro, D., Trinh, M.T., Joshi, P.P., Mosconi, E., Jones, S.C., De Angelis, F., Zhu, X.Y.: Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Fazio, G., Ferrighi, L., Di Valentin, C.: Photoexcited carriers recombination and trapping in spherical vs faceted TiO2 nanoparticles. Nano Energy. 27, 673–689 (2016)

    Article  CAS  Google Scholar 

  130. Kerisit, S., Rosso, K.M.: Charge transfer in FeO: a combined molecular-dynamics and Ab initio study. J. Chem. Phys. 123, 224712 (2005)

    Article  PubMed  CAS  Google Scholar 

  131. Kerisit, S., Deskins, N.A., Rosso, K.M., Dupuis, M.: A shell model for atomistic simulation of charge transfer in titania. J. Phys. Chem. C. 112, 7678–7688 (2008)

    Article  CAS  Google Scholar 

  132. Iguchi, E., Tamenori, A., Kubota, N.: Estimates of Anderson’s electron-phonon-coupling constants for nonadiabatic small polarons in N-type BaTiO3 using a polarizable point-ion shell model. Phys. Rev. B. 45, 697–706 (1992)

    Article  CAS  Google Scholar 

  133. Kerisit, S., Rosso, K.M., Yang, Z., Liu, J.: Dynamics of coupled lithium/electron diffusion in TiO2 polymorphs. J. Phys. Chem. C. 113, 20998–21007 (2009)

    Article  CAS  Google Scholar 

  134. Sinnott, S.B.: Material design and discovery with computational materials science. J. Vac. Sci. Technol. A. 31, 050812 (2013)

    Article  CAS  Google Scholar 

  135. Liang, T., Shan, T.-R., Cheng, Y.-T., Devine, B.D., Noordhoek, M., Li, Y., Lu, Z., Phillpot, S.R., Sinnott, S.B.: Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (comb) potentials. Mater. Sci. Eng. R-Rep. 74, 255–279 (2013)

    Article  Google Scholar 

  136. Adelstein, N., Neaton, J.B., Asta, M., De Jonghe, L.C.: Density functional theory based calculation of small-polaron mobility in hematite. Phys. Rev. B. 89, 245115–245123 (2014)

    Article  CAS  Google Scholar 

  137. Sheppard, D., Terrell, R., Henkelman, G.: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008)

    Article  PubMed  CAS  Google Scholar 

  138. Wang, Z., Bevan, K.H.: Exploring the impact of semicore level electronic relaxation on Polaron dynamics: An adiabatic Ab initio study of FePO4. Phys. Rev. B. 93, 024303 (2016)

    Article  CAS  Google Scholar 

  139. Farazdel, A., Dupuis, M., Clementi, E., Aviram, A.: Electric field induced intramolecular electron transfer in spiro Pi-electron systems and their suitability as molecular electronic devices – a theoretical study. J. Am. Chem. Soc. 112, 4206–4214 (1990)

    Article  CAS  Google Scholar 

  140. Li, X.Y., Tang, X.S., He, F.C.: Electron transfer in poly(P-phenylene) oligomers: effect of external electric field and application of Koopmans theorem. Chem. Phys. 248, 137–146 (1999)

    Article  CAS  Google Scholar 

  141. Kim, H., Kaviany, M.: Coupled polaron-phonon effects on seebeck coefficient and lattice conductivity of B13C2 from first principles. Phys. Rev. B. 87, 155133 (2013)

    Article  CAS  Google Scholar 

  142. Morita, K., Shibuya, T., Yasuoka, K.: Stability of excess electrons introduced by Ti interstitial in rutile TiO2(110) surface. J. Phys. Chem. C. 121, 1602–1607 (2017)

    Article  CAS  Google Scholar 

  143. Kowalski, P.M., Camellone, M.F., Nair, N.N., Meyer, B., Marx, D.: Charge localization dynamics induced by oxygen vacancies on the TiO2 (110) surface. Phys. Rev. Lett. 105, 146405 (2010)

    Article  PubMed  CAS  Google Scholar 

  144. Zhang, Y.K., Yang, W.T.: A challenge for density functionals: self-interaction error increases for systems with a noninteger number of electrons. J. Chem. Phys. 109, 2604–2608 (1998)

    Article  CAS  Google Scholar 

  145. Hasnip, P.J., Refson, K., Probert, M.I.J., Yates, J.R., Clark, S.J., Pickard, C.J.: Density functional theory in the solid state. Philos. Transact. Royal Soc. a-Math. Phys. Eng. Sci. 372, 20130270 (2014)

    Google Scholar 

  146. Wiktor, J., Ambrosio, F., Pasquarello, A.: Role of polarons in water splitting: the case of Bivo4. ACS Energy Lett. 3, 1693–1697 (2018)

    Article  CAS  Google Scholar 

  147. Gono, P., Wiktor, J., Ambrosio, F., Pasquarello, A.: Surface polarons reducing overpotentials in the oxygen evolution reaction. ACS Catal. 8, 5847–5851 (2018)

    Article  CAS  Google Scholar 

  148. Liu, T., Pasumarthi, V., LaPorte, C., Feng, Z., Li, Q., Yang, J., Li, C., Dupuis, M.: Bimodal hole transport in bulk BiVO4 from computation. J. Mater. Chem. 6, 3714–3723 (2018)

    Article  CAS  Google Scholar 

  149. Sidgwick, N.V.: The electronic structure of valency. Oxford: Clarendon. 178, 178–181 (1927)

    Google Scholar 

  150. Sidgwick, N.V., Powell, H.M.: Bakerian lecture: stereochemical types and valency groups. Proc. R. Soc. Lond. 176, 153–180 (1940)

    CAS  Google Scholar 

  151. Walsh, A., Yan, Y., Huda, M.N., Al-Jassim, M.M., Wei, S.H.: Band edge electronic structure of Bivo4: elucidating the role of the Bi s and V d orbitals. Chem. Mater. 21, 547–551 (2009)

    Article  CAS  Google Scholar 

  152. Pham, T.D., Deskins, N.A.: Efficient method for modeling polarons using electronic structure methods. J. Chem. Theory Comput. 16(8), 5264–5278 (2020). https://doi.org/10.1021/acs.jctc.0c00374

  153. van Dam, H.J.J., de Jong, W.A., Bylaska, E., Govind, N., Kowalski, K., Straatsma, T.P., Valiev, M.: NWCHEM: scalable parallel computational chemistry. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 888–894 (2011)

    Google Scholar 

  154. Bylaska, E.J., Rosso, K.: Corresponding orbitals derived from periodic Bloch states for electron transfer calculations of transition metal oxides. J. Chem. Theory Comput. 14, 4416–4426 (2018)

    Article  CAS  PubMed  Google Scholar 

  155. Wu, Q., Van Voorhis, T.: Constrained density functional theory and its application in long-range electron transfer. J. Chem. Theory Comput. 2, 765–774 (2006)

    Article  CAS  PubMed  Google Scholar 

  156. Wu, Q., Van Voorhis, T.: Extracting electron transfer coupling elements from constrained density functional theory. J. Chem. Phys. 125, 164105 (2006)

    Article  PubMed  CAS  Google Scholar 

  157. Kaduk, B., Kowalczyk, T., Van Voorhis, T.: Constrained density functional theory. Chem. Rev. 112, 321–370 (2012)

    Article  CAS  PubMed  Google Scholar 

  158. Melander, M., Jonsson, E.O., Mortensen, J.J., Vegge, T., Lastra, J.M.G.: Implementation of constrained DFT for computing charge transfer rates within the projector augmented wave method. J. Chem. Theory Comput. 12, 5367–5378 (2016)

    Article  CAS  PubMed  Google Scholar 

  159. Gillet, N., Berstis, L., Wu, X.J., Gajdos, F., Heck, A., de la Lande, A., Blumberger, J., Elstner, M.: Electronic coupling calculations for bridge-mediated charge transfer using constrained density functional theory (CDFT) and effective Hamiltonian approaches at the density functional theory (DFT) and fragment-orbital density functional tight binding (FODFTB) level. J. Chem. Theory Comput. 12, 4793–4805 (2016)

    Article  CAS  PubMed  Google Scholar 

  160. Oberhofer, H., Reuter, K., Blumberger, J.: Charge transport in molecular materials: An assessment of computational methods. Chem. Rev. 117, 10319–10357 (2017)

    Article  CAS  PubMed  Google Scholar 

  161. Goldey, M.B., Brawand, N.P., Voros, M., Galli, G.: Charge transport in nanostructured materials: implementation and verification of constrained density functional theory. J. Chem. Theory Comput. 13, 2581–2590 (2017)

    Article  CAS  PubMed  Google Scholar 

  162. Yu, J.G., Rosso, K.M., Bruemmer, S.M.: Charge and ion transport in NiO and aspects of Ni oxidation from first principles. J. Phys. Chem. C. 116, 1948–1954 (2012)

    Article  CAS  Google Scholar 

  163. Sushko, M.L., Rosso, K.M., Liu, J.: Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles. J. Phys. Chem. C. 114, 20277–20283 (2010)

    Article  CAS  Google Scholar 

  164. Yu, J.G., Rosso, K.M., Liu, J.: Charge localization and transport in lithiated olivine phosphate materials. J. Phys. Chem. C. 115, 25001–25006 (2011)

    Article  CAS  Google Scholar 

  165. Yu, J.G., Sushko, M.L., Kerisit, S., Rosso, K.M., Liu, J.: Kinetic Monte Carlo study of ambipolar lithium ion and electron-polaron diffusion into nanostructured TiO2. J. Phys. Chem. Lett. 3, 2076–2081 (2012)

    Article  CAS  Google Scholar 

  166. Maxisch, T., Zhou, F., Ceder, G.: Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B. 73, 104301 (2006)

    Article  CAS  Google Scholar 

  167. Zheng, J.X., Ceder, G., Maxisch, T., Chim, W.K., Choi, W.K.: First-principles study of native point defects in hafnia and zirconia. Phys. Rev. B. 75, 104112 (2007)

    Article  CAS  Google Scholar 

  168. Ihrig, H., Hennings, D.: Electrical transport properties of N-type BaTiO3. Phys. Rev. B. 17, 4593–4599 (1978)

    Article  CAS  Google Scholar 

  169. Loftager, S., Garcia-Lastra, J.M., Vegge, T.: A density functional theory study of the ionic and electronic transport mechanisms in LiFeBO3 battery electrodes. J. Phys. Chem. C. 120, 18355–18364 (2016)

    Article  CAS  Google Scholar 

  170. Ding, H., Lin, H., Sadigh, B., Zhou, F., Ozolins, V., Asta, M.: Computational investigation of electron small polarons in α-MoO3. J. Phys. Chem. C. 118, 15565–15572 (2014)

    Article  CAS  Google Scholar 

  171. Geneste, G., Amadon, B., Torrent, M., Dezanneau, G.: DFT plus U study of self-trapping, trapping, and mobility of oxygen-type hole polarons in barium stannate. Phys. Rev. B. 96, 134123 (2017)

    Article  Google Scholar 

  172. Ong, S.P., Mo, Y.F., Ceder, G.: Low hole polaron migration barrier in lithium peroxide. Phys. Rev. B. 85, 081105 (2012)

    Article  CAS  Google Scholar 

  173. Ramo, D.M., Shluger, A.L., Gavartin, J.L., Bersuker, G.: Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys. Rev. Lett. 99, 155504 (2007)

    Article  CAS  Google Scholar 

  174. Traiwattanapong, W., Janotti, A., Umezawa, N., Limpijumnong, S., T-Thienprasert, J., Reunchan, P.: Self-trapped holes in BaTiO3. J. Appl. Phys. 124, 085703 (2018)

    Article  CAS  Google Scholar 

  175. Bjaalie, L., Janotti, A., Krishnaswamy, K., Van de Walle, C.G.: Point defects, impurities, and small hole polarons in GdTiO3. Phys. Rev. B. 93, 115316 (2016)

    Article  CAS  Google Scholar 

  176. Hoang, K.: Understanding the electronic and ionic conduction and lithium over-stoichiometry in LiMn2O4 spinel. J. Mater. Chem. A. 2, 18271–18280 (2014)

    Article  CAS  Google Scholar 

  177. Hoang, K.: Defect physics, delithiation mechanism, and electronic and ionic conduction in layered lithium manganese oxide cathode materials. Phys. Rev. Appl. 3, 024013 (2015)

    Article  CAS  Google Scholar 

  178. Isseroff, L.Y., Carter, E.A.: Electronic structure of pure and doped cuprous oxide with copper vacancies: suppression of trap states. Chem. Mater. 25, 253–265 (2013)

    Article  CAS  Google Scholar 

  179. Kanan, D.K., Carter, E.A.: Ab initio study of electron and hole transport in pure and doped MnO and MnO:ZnO alloy. J. Mater. Chem. A. 1, 9246–9256 (2013)

    Article  CAS  Google Scholar 

  180. Alidoust, N., Carter, E.A.: First-principles assessment of hole transport in pure and Li-doped NiO. Phys. Chem. Chem. Phys. 17, 18098–18110 (2015)

    Article  CAS  PubMed  Google Scholar 

  181. Vigren, D.T.: Mobility of self-trapped paramagnetic spin polaron. J. Phys. C-Solid State Phys. 6, 967–975 (1973)

    Article  CAS  Google Scholar 

  182. Iguchi, E., Miyagi, H.: A study on the stability of polarons in monoclinic WO3. J. Phys. Chem. Solids. 54, 403–409 (1993)

    Article  CAS  Google Scholar 

  183. Palanna, O.G., Mohan, A.L.S., Biswas, A.B..: Electrical-properties of Fe2O3-V2O5 system. Proc. Indian Acad. Sci. Section A. 87, 259–265 (1978)

    Article  Google Scholar 

  184. Sanchez, C., Henry, M., Morineau, R., Leroy, M.C.: Small polaron mobility in α-LixO5. Physica Status Solidi B-Basic Res. 122, 175–182 (1984)

    Article  CAS  Google Scholar 

  185. Sanchez, C., Morineau, R., Livage, J.: Electrical-conductivity of amorphous V2O5. Physica Status Solidi a-Appl. Res. 76, 661–666 (1983)

    Article  CAS  Google Scholar 

  186. Ioffe, V.A., Patrina, I.B.: Comparison of small-polaron theory with experimental data of current transport in V2O5. Phys. Status Solidi. 40, 389 (1970)

    Article  CAS  Google Scholar 

  187. Ansari, T.H., Gupta, S., Yadava, Y.P., Singh, R.A.: Electrical transport in vanadium molybdate. Mater. Chem. Phys. 20, 293–298 (1988)

    Article  CAS  Google Scholar 

  188. Keroack, D., Lepine, Y., Brebner, J.L.: Drift mobility measurements of small-polaron transport in SrTiO3. J. Phys. C-Solid State Phys. 17, 833–842 (1984)

    Article  CAS  Google Scholar 

  189. Goldschmidt, D., Tuller, H.L.: Small-polaron conduction in Y2Ti2O7. Phys. Rev. B. 34, 5558–5561 (1986)

    Article  CAS  Google Scholar 

  190. Kang, S.D., Dylla, M., Snyder, G.J.: Thermopower-conductivity relation for distinguishing transport mechanisms: polaron hopping in CeO2 and band conduction in SrTiO3. Phys. Rev. B. 97, 235201 (2018)

    Article  CAS  Google Scholar 

  191. Zafar, S., Jones, R.E., Jiang, B., White, B., Kaushik, V., Gillespie, S.: The electronic conduction mechanism in barium strontium titanate thin films. Appl. Phys. Lett. 73, 3533–3535 (1998)

    Article  CAS  Google Scholar 

  192. Deák, P., Aradi, B., Frauenheim, T.: Quantitative theory of the oxygen vacancy and carrier self-trapping in bulk TiO2. Phys. Rev. B. 86, 195206 (2012)

    Article  CAS  Google Scholar 

  193. Deskins, N.A., Rousseau, R., Dupuis, M.: Distribution of Ti3+ surface sites in reduced TiO2. J. Phys. Chem. C. 115, 7562–7572 (2011)

    Article  CAS  Google Scholar 

  194. Di Valentin, C., Selloni, A.: Bulk and surface polarons in photoexcited anatase TiO2. J. Phys. Chem. Lett. 2, 2223–2228 (2011)

    Article  CAS  Google Scholar 

  195. Morgan, B.J., Watson, G.W.: Polaronic trapping of electrons and holes by native defects in anatase TiO2. Phys. Rev. B. 80, 233102 (2009)

    Article  CAS  Google Scholar 

  196. Nolan, M., Iwaszuk, A., Gray, K.A.: Localization of photoexcited electrons and holes on low coordinated Ti and O sites in free and supported TiO2 nanoclusters. J. Phys. Chem. C. 118, 27890–27900 (2014)

    Article  CAS  Google Scholar 

  197. Wallace, S.K., Mckenna, K.P.: Facet-dependent electron trapping in TiO2 nanocrystals. J. Phys. Chem. C. 119, 1913–1920 (2015)

    Article  CAS  Google Scholar 

  198. Reticcioli, M., Setvin, M., Schmid, M., Diebold, U., Franchini, C.: Formation and dynamics of small polarons on the rutile TiO2 (110) surface. Phys. Rev. B. 98, 045306 (2018)

    Article  CAS  Google Scholar 

  199. Duzhko, V., Timoshenko, V.Y., Koch, F., Dittrich, T.: Photovoltage in nanocrystalline porous TiO2. Phys. Rev. B. 64, 075204 (2001)

    Article  CAS  Google Scholar 

  200. Bak, T., Nowotny, M.K., Sheppard, L.R., Nowotny, J.: Mobility of electronic charge carriers in titanium dioxide. J. Phys. Chem. C. 112, 12981–12987 (2008)

    Article  CAS  Google Scholar 

  201. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  PubMed  Google Scholar 

  202. Dotan, H., Sivula, K., Gratzel, M., Rothschild, A., Warren, S.C.: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011)

    Article  CAS  Google Scholar 

  203. Warren, S.C., Voitchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hebert, C., Rothschild, A., Graetzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013)

    Article  CAS  PubMed  Google Scholar 

  204. Le Formal, F., Pendlebury, S.R., Cornuz, M., Tilley, S.D., Graetzel, M., Durrant, J.R.: Back electron-hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 136, 2564–2574 (2014)

    Article  PubMed  CAS  Google Scholar 

  205. Le Formal, F., Pastor, E., Tilley, S.D., Mesa, C.A., Pendlebury, S.R., Gratzel, M., Durrant, J.R.: Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Iordanova, N., Dupuis, M., Rosso, K.M.: Theoretical characterization of charge transport in chromia (α-Cr2O3). J. Chem. Phys. 123, 074710 (2005)

    Article  CAS  PubMed  Google Scholar 

  207. Chun, W.J., Ishikawa, A., Fujisawa, H., Takata, T., Kondo, J.N., Hara, M., Kawai, M., Matsumoto, Y., Domen, K.: Conduction and valence band positions of Ta2O5, Taon, and Ta3n5 by ups and electrochemical methods. J. Phys. Chem. B. 107, 1798–1803 (2003)

    Article  CAS  Google Scholar 

  208. Morbec, J.M., Galli, G.: Charge transport properties of bulk Ta3N5 from first principles. Phys. Rev. B. 93, 035201–035206 (2016)

    Article  CAS  Google Scholar 

  209. Plata, J.J., Marquez, A.M., Sanz, J.F.: Transport properties in the CeO2-X(111) surface: from charge distribution to ion-electron collaborative migration. J. Phys. Chem. C. 117, 25497–25503 (2013)

    Article  CAS  Google Scholar 

  210. Plata, J.J., Marquez, A.M., Sanz, J.F.: Electron mobility via polaron hopping in bulk ceria: a first-principles study. J. Phys. Chem. C. 117, 14502–14509 (2013)

    Article  CAS  Google Scholar 

  211. Plata, J.J., Marquez, A.M., Sanz, J.F.: Understanding the interplay of dopants, interfaces, and anionic conductivity in doped ceria/zirconia heteroepitaxial structures. Chem. Mater. 26, 3385–3390 (2014)

    Article  CAS  Google Scholar 

  212. Skomurski, F.N., Kerisit, S., Rosso, K.M.: Structure, charge distribution, and electron hopping dynamics in magnetite (Fe3O4) (100) surfaces from first principles. Geochim. Cosmochim. Acta. 74, 4234–4248 (2010)

    Article  CAS  Google Scholar 

  213. Liu, H., Di Valentin, C.: Band gap in magnetite above Verwey temperature induced by symmetry breaking. J. Phys. Chem. C. 121, 25736–25742 (2017)

    Article  CAS  Google Scholar 

  214. Sushko, M.L., Rosso, K.M., Liu, J.: Size effects on Li+/electron conductivity in TiO2 nanoparticles. J. Phys. Chem. Lett. 1, 1967–1972 (2010)

    Article  CAS  Google Scholar 

  215. Sushko, M.L., Rosso, K.M., Zhang, J.-G., Liu, J.: Multiscale simulations of Li ion conductivity in solid electrolyte. J. Phys. Chem. Lett. 2, 2352–2356 (2011)

    Article  CAS  Google Scholar 

  216. Kerisit, S., Rosso, K.M.: Kinetic Monte Carlo model of charge transport in hematite (α-Fe2O3). J. Chem. Phys. 127, 124706–124715 (2007)

    Article  PubMed  CAS  Google Scholar 

  217. Liu, D.J., Garcia, A., Wang, J., Ackerman, D.M., Wang, C.J., Evans, J.W.: Kinetic Monte Carlo simulation of statistical mechanical models and coarse-grained mesoscale descriptions of catalytic reaction-diffusion processes: 1D nanoporous and 2D surface systems. Chem. Rev. 115, 5979–6050 (2015)

    Article  CAS  PubMed  Google Scholar 

  218. Hoffmann, M.J., Matera, S., Reuter, K.: Kmos: a lattice kinetic Monte Carlo framework. Comput. Phys. Commun. 185, 2138–2150 (2014)

    Article  CAS  Google Scholar 

  219. Leetmaa, M., Skorodumova, N.V.: Kmclib: a general framework for lattice kinetic Monte Carlo (KMC) simulations. Comput. Phys. Commun. 185, 2340–2349 (2014)

    Article  CAS  Google Scholar 

  220. Samuel, T.C., Matthew, W., Rye, T., Liang, Z., Jean-Claude, B., Andreas, P., Hannes, J., Graeme, H.: Eon: software for long time simulations of atomic scale systems. Model. Simul. Mater. Sci. Eng. 22, 055002 (2014)

    Article  Google Scholar 

  221. Mi, Y., Weng, Y.X.: Band alignment and controllable electron migration between rutile and anatase TiO2. Sci. Rep. 5, 11482–11491 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang, X., Kafizas, A., Li, X., Moniz, S.J.A., Reardon, P.J.T., Tang, J., Parkin, I.P., Durrant, J.R.: Transient absorption spectroscopy of anatase and rutile: the impact of morphology and phase on photocatalytic activity. J. Phys. Chem. C. 119, 10439–10447 (2015)

    Article  CAS  Google Scholar 

  223. Li, A., Wang, Z., Yin, H., Wang, S., Yan, P., Huang, B., Wang, X., Li, R., Zong, X., Han, H., Li, C.: Understanding the Anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 7, 6076–6082 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jin, S.Q., Wang, X., Wang, X.L., Ju, M.G., Shen, S., Liang, W.Z., Zhao, Y., Feng, Z.C., Playford, H.Y., Walton, R.I., Li, C.: Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example. J. Phys. Chem. C. 119, 18221–18228 (2015)

    Article  CAS  Google Scholar 

  225. Wang, X., Xu, Q., Li, M., Shen, S., Wang, X., Wang, Y., Feng, Z., Shi, J., Han, H., Li, C.: Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3. Angew. Chem.-Int. Ed. 51, 13089–13092 (2012)

    Article  CAS  Google Scholar 

  226. Abdi, F.F., Han, L.H., Smets, A.H.M., Zeman, M., Dam, B., van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195–2201 (2013)

    Article  PubMed  CAS  Google Scholar 

  227. Zhang, J.W., Peng, C., Wang, H.F., Hu, P.: Identifying the role of photogenerated holes in photocatalytic methanol dissociation on rutile TiO2 (110). ACS Catal. 7, 2374–2380 (2017)

    Article  CAS  Google Scholar 

  228. Wang, D., Sheng, T., Chen, J.F., Wang, H.F., Hu, P.: Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catalysis. 1, 291–299 (2018)

    Article  CAS  Google Scholar 

  229. Li, Y.F., Selloni, A.: Theoretical study of interfacial electron transfer from reduced anatase TiO2 (101) to adsorbed O2. J. Am. Chem. Soc. 135, 9195–9199 (2013)

    Article  CAS  PubMed  Google Scholar 

  230. Li, Y.F., Selloni, A.: Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 4, 1148–1153 (2014)

    Article  CAS  Google Scholar 

  231. Li, Y.F., Selloni, A.: Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 6, 4769–4774 (2016)

    Article  CAS  Google Scholar 

  232. van der Kaap, N.J., Koster, L.J.A.: Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors. J. Comput. Phys. 307, 321–332 (2016)

    Article  CAS  Google Scholar 

  233. Nelson, J., Kwiatkowski, J.J., Kirkpatrick, J., Frost, J.M.: Modeling charge transport in organic photovoltaic materials. Acc. Chem. Res. 42, 1768–1778 (2009)

    Article  CAS  PubMed  Google Scholar 

  234. Kimber, R.G.E., Wright, E.N., O’Kane, S.E.J., Walker, A.B.., Blakesley, J.C.: Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics. Phys. Rev. B. 86, 235206 (2012)

    Article  CAS  Google Scholar 

  235. Albes, T., Popescu, B., Popescu, D., Arca, F., Lugli, P.: IEEE: Optimization of Organic Solar Cells by Kinetic Monte Carlo Simulations, 2014 IEEE 14th International Conference on Nanotechnology (2014)

    Google Scholar 

  236. Rettie, A.J.E., Chemelewski, W.D., Lindemuth, J., McCloy, J.S., Marshall, L.G., Zhou, J.S., Emin, D., Mullins, C.B.: Anisotropic small-polaron hopping in W:BiVO4 single crystals. Appl. Phys. Lett. 106, 022106–022110 (2015)

    Article  CAS  Google Scholar 

  237. Dixit, H., Saniz, R., Cottenier, S., Lamoen, D., Partoens, B.: Electronic structure of transparent oxides with the Tran–Blaha modified Becke–Johnson potential. J. Phys. Condens. Matter. 24, 205503 (2012)

    Article  CAS  PubMed  Google Scholar 

  238. Kim, Y.-S., Marsman, M., Kresse, G., Tran, F., Blaha, P.: Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors. Phys. Rev. B. 82, 205212 (2010)

    Article  CAS  Google Scholar 

  239. Vogel, D.J., Kilin, D.S.: First-principles treatment of photoluminescence in semiconductors. J. Phys. Chem. C. 119, 27954–27964 (2015)

    Article  CAS  Google Scholar 

  240. Du, M.H.: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A. 2, 9091–9098 (2014)

    Article  CAS  Google Scholar 

  241. Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013)

    Article  CAS  PubMed  Google Scholar 

  242. Körbel, S., Marques, M.A.L., Botti, S.: Stability and electronic properties of new inorganic perovskites from high-throughput Ab initio calculations. J. Mater. Chem. C. 4, 3157–3167 (2016)

    Article  CAS  Google Scholar 

  243. Ramos, L.E., Teles, L.K., Scolfaro, L.M.R., Castineira, J.L.P., Rosa, A.L., Leite, J.R.: Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds. Phys. Rev. B. 63, 165210 (2001)

    Article  CAS  Google Scholar 

  244. Kadantsev, E.S., Hawrylak, P.: Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012)

    Article  CAS  Google Scholar 

  245. Peelaers, H., Van de Walle, C.G.: Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B. 86, 241401 (2012)

    Article  CAS  Google Scholar 

  246. Ryu, B., Oh, M.-W.: Computational simulations of thermoelectric transport properties. J. Korean Ceram. Soc. 53, 273–281 (2016)

    Article  CAS  Google Scholar 

  247. Madsen, G.K.H., Singh, D.J.: Boltztrap. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  CAS  Google Scholar 

  248. Madsen, G.K.H., Carrete, J., Verstraete, M.J.: Boltztrap2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018)

    Article  CAS  Google Scholar 

  249. Gorai, P., Stevanović, V., Toberer, E.S.: Computationally guided discovery of thermoelectric materials. Nature Reviews Materials. 2, 17053 (2017)

    Article  CAS  Google Scholar 

  250. Faghaninia, A., Ager, J.W., Lo, C.S.: Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation. Phys. Rev. B. 91, 235123 (2015)

    Article  CAS  Google Scholar 

  251. Pizzi, G., Volja, D., Kozinsky, B., Fornari, M., Marzari, N.: Boltzwann: a code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Comput. Phys. Commun. 185, 422–429 (2014)

    Article  CAS  Google Scholar 

  252. Bernardi, M., Vigil-Fowler, D., Lischner, J., Neaton, J.B., Louie, S.G.: Ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon. Phys. Rev. Lett. 112, 257402 (2014)

    Article  PubMed  CAS  Google Scholar 

  253. Restrepo, O.D., Varga, K., Pantelides, S.T.: First-principles calculations of electron mobilities in silicon: phonon and coulomb scattering. Appl. Phys. Lett. 94, 212103 (2009)

    Article  CAS  Google Scholar 

  254. Slassi, A., Naji, S., Benyoussef, A., Hamedoun, M., El Kenz, A.: On the transparent conducting oxide Al doped ZnO: first principles and Boltzmann equations study. J. Alloys Compd. 605, 118–123 (2014)

    Article  CAS  Google Scholar 

  255. Peng, H., Song, J.-H., Kanatzidis, M.G., Freeman, A.J.: Electronic structure and transport properties of doped PbSe. Phys. Rev. B. 84, 125207 (2011)

    Article  CAS  Google Scholar 

  256. Chmielowski, R., Péré, D., Bera, C., Opahle, I., Xie, W., Jacob, S., Capet, F., Roussel, P., Weidenkaff, A., Madsen, G.K.H., Dennler, G.: Theoretical and experimental investigations of the thermoelectric properties of Bi2S3. J. Appl. Phys. 117, 125103 (2015)

    Article  CAS  Google Scholar 

  257. Krishnaswamy, K., Himmetoglu, B., Kang, Y., Janotti, A., Van de Walle, C.G.: First-principles analysis of electron transport in BaSnO3. Phys. Rev. B. 95, 205202 (2017)

    Article  Google Scholar 

  258. Khandy, S.A., Gupta, D.C.: Structural, elastic and thermo-electronic properties of paramagnetic perovskite PbTaO3. RSC Adv. 6, 48009–48015 (2016)

    Article  CAS  Google Scholar 

  259. Cui, Z.-H., Jimenez-Izal, E., Alexandrova, A.N.: Prediction of two-dimensional phase of boron with anisotropic electric conductivity. J. Phys. Chem. Lett. 8, 1224–1228 (2017)

    Article  CAS  PubMed  Google Scholar 

  260. Xi, J., Long, M., Tang, L., Wang, D., Shuai, Z.: First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale. 4, 4348–4369 (2012)

    Article  CAS  PubMed  Google Scholar 

  261. Motta, C., El-Mellouhi, F., Sanvito, S.: Charge carrier mobility in hybrid halide perovskites. Sci. Rep. 5, 12746 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Rettie, A.J.E., Sturza, M., Malliakas, C.D., Botana, A.S., Chung, D.Y., Kanatzidis, M.G.: Copper vacancies and heavy holes in the two-dimensional semiconductor KCu3–XSe2. Chem. Mater. 29, 6114–6121 (2017)

    Article  CAS  Google Scholar 

  263. Bahuguna, B.P., Saini, L.K., Sharma, R.O., Tiwari, B.: Hybrid functional calculations of electronic and thermoelectric properties of GaS, GaSe, and GaTe monolayers. Phys. Chem. Chem. Phys. 20, 28575–28582 (2018)

    Article  CAS  PubMed  Google Scholar 

  264. Gibbs, Z.M., Ricci, F., Li, G., Zhu, H., Persson, K., Ceder, G., Hautier, G., Jain, A., Snyder, G.J.: Effective mass and Fermi surface complexity factor from Ab initio band structure calculations. npj Comput. Mater. 3, 8 (2017)

    Article  CAS  Google Scholar 

  265. Varley, J.B., Miglio, A., Ha, V.-A., van Setten, M.J., Rignanese, G.-M., Hautier, G.: High-throughput design of non-oxide P-type transparent conducting materials: data mining, search strategy, and identification of boron phosphide. Chem. Mater. 29, 2568–2573 (2017)

    Article  CAS  Google Scholar 

  266. Ricci, F., Chen, W., Aydemir, U., Snyder, G.J., Rignanese, G.-M., Jain, A., Hautier, G.: An Ab initio electronic transport database for inorganic materials. Scientific Data. 4, 170085 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Bhatia, A., Hautier, G., Nilgianskul, T., Miglio, A., Sun, J., Kim, H.J., Kim, K.H., Chen, S., Rignanese, G.-M., Gonze, X., Suntivich, J.: High-mobility bismuth-based transparent P-type oxide from high-throughput material screening. Chem. Mater. 28, 30–34 (2016)

    Article  CAS  Google Scholar 

  268. Yu, J., Wang, J., Kumar, M., Umezawa, N., Abe, H.: Design of P-type transparent conducting oxides Sn2GeO4 by an Ab initio evolutionary structure search. J. Mater. Chem. C. 6, 11202–11208 (2018)

    Article  CAS  Google Scholar 

  269. Raghupathy, R.K.M., Kühne, T.D., Felser, C., Mirhosseini, H.: Rational design of transparent P-type conducting non-oxide materials from high-throughput calculations. J. Mater. Chem. C. 6, 541–549 (2018)

    Article  Google Scholar 

  270. Woods-Robinson, R., Broberg, D., Faghaninia, A., Jain, A., Dwaraknath, S.S., Persson, K.A.: Assessing high-throughput descriptors for prediction of transparent conductors. Chem. Mater. 30, 8375–8389 (2018)

    Article  CAS  Google Scholar 

  271. Maassen, J., Lundstrom, M.: (Invited) the Landauer approach to electron and phonon transport. ECS Trans. 69, 23–36 (2015)

    Article  CAS  Google Scholar 

  272. Conrad, K., Maassen, J., Lundstrom, M.: Lantrap. https://nanohub.org/resources/lantrap. (2013). https://doi.org/10.4231/D3NP1WJ64

  273. Novaes, F.D., Silva, A.J.R.D., Fazzio, A.: Density functional theory method for non-equilibrium charge transport calculations: Transampa. Braz. J. Phys. 36, 799–807 (2006)

    Article  CAS  Google Scholar 

  274. Stokbro, K., Taylor, J., Brandbyge, M., Ordejón, P.: Transiesta: a spice for molecular electronics. Ann. N. Y. Acad. Sci. 1006, 212–226 (2003)

    Article  CAS  PubMed  Google Scholar 

  275. Hakamata, T., Shimamura, K., Shimojo, F., Kalia, R.K., Nakano, A., Vashishta, P.: The nature of free-carrier transport in organometal halide perovskites. Sci. Rep. 6, 19599 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Philbin, J.P., Rabani, E.: Electron–hole correlations govern auger recombination in nanostructures. Nano Lett. 18, 7889–7895 (2018)

    Article  CAS  PubMed  Google Scholar 

  277. Wang, L., Long, R., Prezhdo, O.V.: Time-domain Ab initio modeling of photoinduced dynamics at nanoscale interfaces. Annu. Rev. Phys. Chem. 66, 549–579 (2015)

    Article  CAS  PubMed  Google Scholar 

  278. Duncan, W.R., Craig, C.F., Prezhdo, O.V.: Time-domain Ab initio study of charge relaxation and recombination in dye-sensitized TiO2. J. Am. Chem. Soc. 129, 8528–8543 (2007)

    Article  CAS  PubMed  Google Scholar 

  279. Nam, Y., Li, L., Lee, J.Y., Prezhdo, O.V.: Size and shape effects on charge recombination dynamics of TiO2 nanoclusters. J. Phys. Chem. C. 122, 5201–5208 (2018)

    Article  CAS  Google Scholar 

  280. Ma, W., Jiao, Y., Meng, S.: Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification. Phys. Chem. Chem. Phys. 15, 17187–17194 (2013)

    Article  CAS  PubMed  Google Scholar 

  281. Li, W., Tang, J., Casanova, D., Prezhdo, O.V.: Time-domain Ab initio analysis rationalizes the unusual temperature dependence of charge carrier relaxation in lead halide perovskite. ACS Energy Letters. 3, 2713–2720 (2018)

    Article  CAS  Google Scholar 

  282. Stoneham, A.M., Gavartin, J., Shluger, A.L., Kimmel, A.V., Ramo, D.M., Rønnow, H.M., Aeppli, G., Renner, C.: Trapping, self-trapping and the polaron family. J. Phys. Condens. Matter. 19, 255208 (2007)

    Article  CAS  Google Scholar 

  283. Shluger, A.L., McKenna, K.P., Sushko, P.V., Ramo, D.M., Kimmel, A.V.: Modelling of electron and hole trapping in oxides. Model. Simul. Mater. Sci. Eng. 17, 084004 (2009)

    Article  CAS  Google Scholar 

  284. Lambrecht, W.R.L.: Which electronic structure method for the study of defects: a commentary. Phys. Status Solidi B. 248, 1547–1558 (2010)

    Article  CAS  Google Scholar 

  285. Yamamoto, T., Ohno, T.: A hybrid density functional study on the electron and hole trap states in anatase titanium dioxide. Phys. Chem. Chem. Phys. 14, 589–598 (2012)

    Article  CAS  PubMed  Google Scholar 

  286. Gavartin, J., Muñoz Ramo, D., Shluger, A., Bersuker, G., Lee, B.: Negative oxygen vacancies in HfO2 as charge traps in high-K stacks. Appl. Phys. Lett. 89, 082908 (2006)

    Article  CAS  Google Scholar 

  287. Foster, A.S., Sulimov, V., Gejo, F.L., Shluger, A., Nieminen, R.M.: Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B. 64, 224108 (2001)

    Article  CAS  Google Scholar 

  288. Yuan, S., Roldán, R., Katsnelson, M.I., Guinea, F.: Effect of point defects on the optical and transport properties of MoS2 and WS2. Phys. Rev. B. 90, 041402 (2014)

    Article  CAS  Google Scholar 

  289. Pham, H.H., Wang, L.-W.: Oxygen vacancy and hole conduction in amorphous TiO2. Phys. Chem. Chem. Phys. 17, 541–550 (2015)

    Article  CAS  PubMed  Google Scholar 

  290. Deskins, N.A., Du, J., Rao, P.: The structural and electronic properties of reduced amorphous titania. Phys. Chem. Chem. Phys. 19, 18671–18684 (2017)

    Article  CAS  PubMed  Google Scholar 

  291. Kaviani, M., Strand, J., Afanas’ev, V.V., Shluger, A.L.: Deep electron and hole polarons and bipolarons in amorphous oxide. Phys. Rev. B. 94, 020103 (2016)

    Article  CAS  Google Scholar 

  292. Jack, S., Moloud, K., David, G., Al-Moatasem, E.-S., Valeri, V.A.E., Alexander, L.S.: Intrinsic charge trapping in amorphous oxide films: status and challenges. J. Phys. Condens. Matter. 30, 233001 (2018)

    Article  Google Scholar 

  293. Zhang, J., Hughes, T.F., Steigerwald, M., Brus, L., Friesner, R.A.: Realistic cluster modeling of electron transport and trapping in solvated TiO2 nanoparticles. J. Am. Chem. Soc. 134, 12028–12042 (2012)

    Article  CAS  PubMed  Google Scholar 

  294. Wallace, S.K., McKenna, K.P.: Grain boundary controlled electron mobility in polycrystalline titanium dioxide. Adv. Mater. Interfaces. 1, 1400078 (2014)

    Article  CAS  Google Scholar 

  295. McKenna, K.P., Shluger, A.L.: Electron-trapping polycrystalline materials with negative electron affinity. Nat. Mater. 7, 859 (2008)

    Article  CAS  PubMed  Google Scholar 

  296. Garcia, J.C., Nolan, M., Deskins, N.A.: The nature of interfaces and charge trapping sites in photocatalytic mixed-phase TiO2 from first principles modeling. J. Chem. Phys. 142, 024708 (2015)

    Article  PubMed  CAS  Google Scholar 

  297. Nolan, M., Deskins, N.A., Schwartzenberg, K.C., Gray, K.A.: Local interfacial structure influences charge localization in titania composites: beyond the band alignment paradigm. J. Phys. Chem. C. 120, 1808–1815 (2016)

    Article  CAS  Google Scholar 

  298. Zhu, Z., Iyemperumal, S.K., Kushnir, K., Carl, A.D., Zhou, L., Brodeur, D.R., Grimm, R.L., Titova, L.V., Deskins, N.A., Rao, P.M.: Enhancing the solar energy conversion efficiency of solution-deposited Bi2S3 thin films by annealing in sulfur vapor at elevated temperature. Sustainable Energy & Fuels. 1, 2134–2144 (2017)

    Article  CAS  Google Scholar 

  299. Voznyy, O.: Mobile surface traps in Cdse nanocrystals with carboxylic acid ligands. J. Phys. Chem. C. 115, 15927–15932 (2011)

    Article  CAS  Google Scholar 

  300. Liu, Y., Stradins, P., Deng, H., Luo, J., Wei, S.-H.: Suppress carrier recombination by introducing defects: the case of Si solar cell. Appl. Phys. Lett. 108, 022101 (2016)

    Article  CAS  Google Scholar 

  301. Seebauer, E.G., Kratzer, M.C.: Charged point defects in semiconductors. Mater. Sci. Eng.: R: Rep. 55, 57–149 (2006)

    Article  CAS  Google Scholar 

  302. Seebauer, E.G., Kratzer, M.C.: Charged Semiconductor Defects: Structure, Thermodynamics and Diffusion. Springer Science & Business Media (2008)

    Google Scholar 

  303. Van de Walle, C.G., Janotti, A.: Advances in electronic structure methods for defects and impurities in solids. Phys. Status Solidi B. 248, 19–27 (2010)

    Article  CAS  Google Scholar 

  304. Risto, M.N.: Issues in first-principles calculations for defects in semiconductors and oxides. Model. Simul. Mater. Sci. Eng. 17, 084001 (2009)

    Article  CAS  Google Scholar 

  305. Van de Walle, C.G., Neugebauer, J.: First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004)

    Article  CAS  Google Scholar 

  306. Dreyer, C.E., Alkauskas, A., Lyons, J.L., Janotti, A., Van de Walle, C.G.: First-principles calculations of point defects for quantum technologies. Annu. Rev. Mater. Res. 48, 1–26 (2018)

    Article  CAS  Google Scholar 

  307. Lyons, J.L., Van de Walle, C.G.: Computationally predicted energies and properties of defects in GaN. npj Comput. Mater. 3, 12 (2017)

    Article  CAS  Google Scholar 

  308. Kohan, A.F., Ceder, G., Morgan, D., Van de Walle, C.G.: First-principles study of native point defects in ZnO. Phys. Rev. B. 61, 15019–15027 (2000)

    Article  CAS  Google Scholar 

  309. Janotti, A., Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B. 76, 165202 (2007)

    Article  CAS  Google Scholar 

  310. El-Mellouhi, F., Mousseau, N.: Self-vacancies in gallium arsenide: An Ab initio calculation. Phys. Rev. B. 71, 125207 (2005)

    Article  CAS  Google Scholar 

  311. Mooney, P.M.: Chapter 2 Defect identification using capacitance spectroscopy. In: Stavola, M. (ed.) Semiconductors and Semimetals, vol. 51, pp. 93–152. Elsevier (1999)

    Google Scholar 

  312. Broberg, D., Medasani, B., Zimmermann, N.E.R., Yu, G., Canning, A., Haranczyk, M., Asta, M., Hautier, G.: PyCDT: a python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018)

    Article  CAS  Google Scholar 

  313. Alkauskas, A., Yan, Q., Van de Walle, C.G.: First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B. 90, 075202 (2014)

    Article  CAS  Google Scholar 

  314. Brandt, R.E., Stevanović, V., Ginley, D.S., Buonassisi, T.: Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015)

    Article  CAS  Google Scholar 

  315. Long, R., English, N.J., Prezhdo, O.V.: Minimizing electron–hole recombination on TiO2 sensitized with PbSe quantum dots: time-domain Ab initio analysis. J. Phys. Chem. Lett. 5, 2941–2946 (2014)

    Article  CAS  PubMed  Google Scholar 

  316. Guo, Z., Prezhdo, O.V., Hou, T., Chen, X., Lee, S.-T., Li, Y.: Fast energy relaxation by trap states decreases electron mobility in TiO2 nanotubes: time-domain Ab initio analysis. J. Phys. Chem. Lett. 5, 1642–1647 (2014)

    Article  CAS  PubMed  Google Scholar 

  317. Zhou, Z., Liu, J., Long, R., Li, L., Guo, L., Prezhdo, O.V.: Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 139, 6707–6717 (2017)

    Article  CAS  PubMed  Google Scholar 

  318. Li, W., Sun, Y.-Y., Li, L., Zhou, Z., Tang, J., Prezhdo, O.V.: Control of charge recombination in perovskites by oxidation state of halide vacancy. J. Am. Chem. Soc. 140, 15753–15763 (2018)

    Article  CAS  PubMed  Google Scholar 

  319. Ganose, A.M., Matsumoto, S., Buckeridge, J., Scanlon, D.O.: Defect engineering of earth-abundant solar absorbers BiSi and BiSeI. Chem. Mater. 30, 3827–3835 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Shimamura, K., Yuan, Z., Shimojo, F., Nakano, A.: Effects of twins on the electronic properties of Gaas. Appl. Phys. Lett. 103, 022105 (2013)

    Article  CAS  Google Scholar 

  321. Alkauskas, A., Dreyer, C.E., Lyons, J.L., Van de Walle, C.G.: Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. Phys. Rev. B. 93, 201304 (2016)

    Article  CAS  Google Scholar 

  322. Zhu, J., Fan, F.T., Chen, R.T., An, H.Y., Feng, Z.C., Li, C.: Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem.-Int. Ed. 54, 9111–9114 (2015)

    Article  CAS  Google Scholar 

  323. Liu, T.F., Zhou, X., Dupuis, M., Li, C.: The nature of photogenerated charge separation among different crystal facets of BiVO4 studied by density functional theory. Phys. Chem. Chem. Phys. 17, 23503–23510 (2015)

    Article  CAS  PubMed  Google Scholar 

  324. Li, R., Zhang, F., Wang, D., Yang, J., Li, M., Zhu, J., Zhou, X., Han, H., Li, C.: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 4, 1432–1438 (2013)

    Article  PubMed  CAS  Google Scholar 

  325. Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119–2125 (2011)

    Article  CAS  PubMed  Google Scholar 

  326. Cooper, J.K., Scott, S.B., Ling, Y., Yang, J., Hao, S., Li, Y., Toma, F.M., Stutzmann, M., Lakshmi, K.V., Sharp, I.D.: Role of hydrogen in defining the n-type character of BiVO4 photoanodes. Chem. Mater. 28, 5761–5771 (2016)

    Article  CAS  Google Scholar 

  327. Gholipour, M.R., Dinh, C.T., Beland, F., Do, T.O.: Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale. 7, 8187–8208 (2015)

    Article  CAS  Google Scholar 

  328. Low, J., Yu, J., Jaroniec, M., Wageh, S., Al-Ghamdi Ahmed, A.: Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Article  CAS  Google Scholar 

  329. Song, J., Seo, M.J., Lee, T.H., Jo, Y.-R., Lee, J., Kim, T.L., Kim, S.-Y., Kim, S.-M., Jeong, S.Y., An, H., Kim, S., Lee, B.H., Lee, D., Jang, H.W., Kim, B.-J., Lee, S.: Tailoring crystallographic orientations to substantially enhance charge separation efficiency in anisotropic BiVO4 photoanodes. ACS Catal. 8, 5952–5962 (2018)

    Article  CAS  Google Scholar 

  330. Wang, F., Septina, W., Chemseddine, A., Abdi, F.F., Friedrich, D., Bogdanoff, P., van de Krol, R., Tilley, S.D., Berglund, S.P.: Gradient self-doped Cubi2o4 with highly improved charge separation efficiency. J. Am. Chem. Soc. 139, 15094–15103 (2017)

    Article  CAS  PubMed  Google Scholar 

  331. Abdi, F.F., Starr, D.E., Ahmet, I.Y., van de Krol, R.: Photocurrent enhancement by spontaneous formation of a p-n junction in calcium-doped bismuth vanadate photoelectrodes. ChemPlusChem. 83, 941–946 (2018)

    Article  CAS  PubMed  Google Scholar 

  332. Lin, Y., Xu, Y., Mayer, M.T., Simpson, Z.I., McMahon, G., Zhou, S., Wang, D.: Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508–5511 (2012)

    Article  CAS  PubMed  Google Scholar 

  333. Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., Lewis, N.S.: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science. 344, 1005–1009 (2014)

    Article  CAS  PubMed  Google Scholar 

  334. Luo, J., Steier, L., Son, M.-K., Schreier, M., Mayer, M.T., Grätzel, M.: Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 1848–1857 (2016)

    Article  CAS  PubMed  Google Scholar 

  335. Zhao, J., Minegishi, T., Zhang, L., Zhong, M., Gunawan, Nakabayashi, M., Ma, G., Hisatomi, T., Katayama, M., Ikeda, S., Shibata, N., Yamada, T., Domen, K.: Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition–sulfurization method. Angew. Chem. Int. Ed. 53, 11808–11812 (2014)

    Article  CAS  Google Scholar 

  336. Kim, T.W., Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 343, 990–994 (2014)

    Article  CAS  PubMed  Google Scholar 

  337. Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J., Gratzel, M.: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 7436–7444 (2010)

    Article  CAS  PubMed  Google Scholar 

  338. Cesar, I., Sivula, K., Kay, A., Zboril, R., Graetzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C. 113, 772–782 (2009)

    Article  CAS  Google Scholar 

  339. Yang, X.Y., Wolcott, A., Wang, G.M., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z., Li, Y.: Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009)

    Article  CAS  PubMed  Google Scholar 

  340. Wang, G.M., Yang, X.Y., Qian, F., Zhang, J.Z., Li, Y.: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088–1092 (2010)

    Article  CAS  PubMed  Google Scholar 

  341. Wang, G.M., Wang, H.Y., Ling, Y.C., Tang, Y.C., Yang, X.Y., Fitzmorris, R.C., Wang, C.C., Zhang, J.Z., Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)

    Article  CAS  PubMed  Google Scholar 

  342. Su, J.Z., Feng, X.J., Sloppy, J.D., Guo, L.J., Grimes, C.A.: Vertically aligned Wo3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 11, 203–208 (2011)

    Article  CAS  PubMed  Google Scholar 

  343. Mayer, M.T., Du, C., Wang, D.W.: Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J. Am. Chem. Soc. 134, 12406–12409 (2012)

    Article  CAS  PubMed  Google Scholar 

  344. Cho, I.S., Chen, Z.B., Forman, A.J., Kim, D.R., Rao, P.M., Jaramillo, T.F., Zheng, X.L.: Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011)

    Article  CAS  PubMed  Google Scholar 

  345. Liu, C.B., Wang, L.L., Tang, Y.H., Luo, S.L., Liu, Y.T., Zhang, S.Q., Zeng, Y.X., Xu, Y.Z.: Vertical single or few-layer Mos2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catalysis B-Environ. 164, 1–9 (2015)

    Article  CAS  Google Scholar 

  346. Cheng, Z.Z., Wang, F.M., Shifa, T.A., Liu, K.L., Huang, Y., Liu, Q.L., Jiang, C., He, J.: Carbon dots decorated vertical SnS2 nanosheets for efficient photocatalytic oxygen evolution. Appl. Phys. Lett. 109, 053905 (2016)

    Article  CAS  Google Scholar 

  347. Rao, P.M., Cai, L.L., Liu, C., Cho, I.S., Lee, C.H., Weisse, J.M., Yang, P.D., Zheng, X.L.: Simultaneously efficient light absorption and charge separation in WO3/BiVO4 Core/Shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014)

    Article  CAS  PubMed  Google Scholar 

  348. Zhou, L.T., Zhao, C.Q., Giri, B., Allen, P., Xu, X.W., Joshi, H., Fan, Y.Y., Titova, L.V., Rao, P.M.: High light absorption and charge separation efficiency at low applied voltage from Sb-doped SnO2/BiVO4 Core/Shell Nanorod-Array photoanodes. Nano Lett. 16, 3463–3474 (2016)

    Article  CAS  PubMed  Google Scholar 

  349. Zhou, L., Yang, Y., Zhang, J., Rao, P.M.: Photoanode with enhanced performance achieved by coating BiVO4 onto Zno-templated Sb-doped SnO2 nanotube scaffold. ACS Appl. Mater. Interfaces. 9, 11356–11362 (2017)

    Article  CAS  PubMed  Google Scholar 

  350. Sivula, K., Le Formal, F., Gratzel, M.: WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009)

    Article  CAS  Google Scholar 

  351. Han, H., Kment, S., Karlicky, F., Wang, L., Naldoni, A., Schmuki, P., Zboril, R.: Sb-doped Sno2 nanorods underlayer effect to the α-Fe2O3 nanorods sheathed with TiO2 for enhanced photoelectrochemical water splitting. Small. 14, 1703860 (2018)

    Article  CAS  Google Scholar 

  352. Sun, Y., Chemelewski, W.D., Berglund, S.P., Li, C., He, H., Shi, G., Mullins, C.B.: Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. ACS Appl. Mater. Interfaces. 6, 5494–5499 (2014)

    Article  CAS  PubMed  Google Scholar 

  353. Jang, J.-W., Friedrich, D., Müller, S., Lamers, M., Hempel, H., Lardhi, S., Cao, Z., Harb, M., Cavallo, L., Heller, R., Eichberger, R., van de Krol, R., Abdi, F.F.: Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment. Adv. Energy Mater. 7, 1701536 (2017)

    Article  CAS  Google Scholar 

  354. Le Formal, F., Tetreault, N., Cornuz, M., Moehl, T., Gratzel, M., Sivula, K.: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011)

    Article  Google Scholar 

  355. Thorne, J.E., Jang, J.-W., Liu, E.Y., Wang, D.: Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 7, 3347–3354 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Hisatomi, T., Dotan, H., Stefik, M., Sivula, K., Rothschild, A., Gratzel, M., Mathews, N.: Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24, 2699–2702 (2012)

    Article  CAS  PubMed  Google Scholar 

  357. Liang, Y., Tsubota, T., Mooij, L.P.A., van de Krol, R.: Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J. Phys. Chem. C. 115, 17594–17598 (2011)

    Article  CAS  Google Scholar 

  358. Marschall, R.: Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24, 2421–2440 (2014)

    Article  CAS  Google Scholar 

  359. Liu, C., Li, X.B., Su, J.Z., Guo, L.J.: Enhanced charge separation in copper incorporated Bivo4 with gradient doping concentration profile for photoelectrochemical water splitting. Int. J. Hydrog. Energy. 41, 12842–12851 (2016)

    Article  CAS  Google Scholar 

  360. Han, L.H., Abdi, F.F., van de Krol, R., Liu, R., Huang, Z.Q., Lewerenz, H.J., Dam, B., Zeman, M., Smets, A.H.M.: Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. ChemSusChem. 7, 2832–2838 (2014)

    Article  CAS  PubMed  Google Scholar 

  361. Maeda, K., Xiong, A., Yoshinaga, T., Ikeda, T., Sakamoto, N., Hisatomi, T., Takashima, M., Lu, D., Kanehara, M., Setoyama, T., Teranishi, T., Domen, K.: Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew. Chem.-Int. Ed. 49, 4096–4099 (2010)

    Article  CAS  Google Scholar 

  362. Zong, X., Yan, H., Wu, G., Ma, G., Wen, F., Wang, L., Li, C.: Enhancement of photocatalytic H-2 evolution on Cds by loading Mos2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008)

    Article  CAS  PubMed  Google Scholar 

  363. Yang, J.H., Wang, D.G., Han, H.X., Li, C.: Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013)

    Article  CAS  PubMed  Google Scholar 

  364. Mu, L., Yue, Z., Li, A., Wang, S., Wang, Z., Yang, J., Wang, Y., Liu, T., Chen, R., Zhu, J., Fan, F., Li, R., Li, C.: Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 9, 2463–2469 (2016)

    Article  CAS  Google Scholar 

  365. Selcuk, S., Selloni, A.: Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1113 (2016)

    Article  CAS  PubMed  Google Scholar 

  366. Roy, N., Sohn, Y., Pradhan, D.: Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano. 7, 2532–2540 (2013)

    Article  CAS  PubMed  Google Scholar 

  367. Liu, C., Han, X.G., Xie, S.F., Kuang, Q., Wang, X., Jin, M.S., Xie, Z.X., Zheng, L.S.: Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes. Chem. Asian J. 8, 282–289 (2013)

    Article  CAS  PubMed  Google Scholar 

  368. Zhao, X.W., Jin, W.Z., Cai, J.G., Ye, J.F., Li, Z.H., Ma, Y.R., Xie, J.L., Qi, L.M.: Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets. Adv. Funct. Mater. 21, 3554–3563 (2011)

    Article  CAS  Google Scholar 

  369. Gao, Y.Y., Zhu, D., An, H.Y., Yan, P.L., Huang, B.K., Chen, R.T., Fan, F.T., Li, C.: Directly probing charge separation at interface of TiO2 phase junction. J. Phys. Chem. Lett. 8, 1419–1423 (2017)

    Article  CAS  PubMed  Google Scholar 

  370. Li, R., Weng, Y., Zhou, X., Wang, X., Mi, Y., Chong, R., Han, H., Li, C.: Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 8, 2377–2382 (2015)

    Article  CAS  Google Scholar 

  371. Ma, Y., Wang, X., Li, C.: Charge separation promoted by phase junctions in photocatalysts. Chin. J. Catal. 36, 1519–1527 (2015)

    Article  CAS  Google Scholar 

  372. Li, H., Yu, H., Quan, X., Chen, S., Zhao, H.: Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment. Adv. Funct. Mater. 25, 3074–3080 (2015)

    Article  CAS  Google Scholar 

  373. Bai, S., Xiong, Y.: Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem. Commun. 51, 10261–10271 (2015)

    Article  CAS  Google Scholar 

  374. Wang, C., Bai, S., Xiong, Y.: Recent advances in surface and interface engineering for electrocatalysis. Chin. J. Catal. 36, 1476–1493 (2015)

    Article  CAS  Google Scholar 

  375. Bai, S., Wang, L.L., Li, Z.Q., Xiong, Y.J.: Facet-engineered surface and interface design of photocatalytic materials. Advanced Science. 4, 1600216 (2017)

    Article  PubMed  CAS  Google Scholar 

  376. Roy, N., Park, Y., Sohn, Y., Leung, K.T., Pradhan, D.: Green synthesis of anatase TiO2 nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity. ACS Appl. Mater. Interfaces. 6, 16498–16507 (2014)

    Article  CAS  PubMed  Google Scholar 

  377. Liu, T., Li, C., Dupuis, M.: Band alignment and polaron stability among the different facets of bismuth vanadate. J. Mater. Chem. A submitted. (2018)

    Google Scholar 

  378. Wang, S., Chen, H., Gao, G., Butburee, T., Lyu, M., Thaweesak, S., Yun, J.-H., Du, A., Liu, G., Wang, L.: Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy. 24, 94–102 (2016)

    Article  CAS  Google Scholar 

  379. Li, N., Liu, M., Zhou, Z., Zhou, J., Sun, Y., Guo, L.: Charge separation in facet-engineered chalcogenide photocatalyst: a selective photocorrosion approach. Nanoscale. 6, 9695–9702 (2014)

    Article  CAS  PubMed  Google Scholar 

  380. Li, P., Zhou, Y., Zhao, Z., Xu, Q., Wang, X., Xiao, M., Zou, Z.: Hexahedron prism-anchored octahedronal CeO2: crystal facet-based homojunction promoting efficient solar fuel synthesis. J. Am. Chem. Soc. 137, 9547–9550 (2015)

    Article  CAS  PubMed  Google Scholar 

  381. He, Y., Que, W., Liu, X., Wu, C.: Trapping behaviors of photogenerated electrons on the (110), (101), and (221) facets of SnO2: experimental and Dft investigations. ACS Appl. Mater. Interfaces. 9, 38984–38991 (2017)

    Article  CAS  PubMed  Google Scholar 

  382. Ma, X., Dai, Y., Guo, M., Huang, B.: Relative photooxidation and photoreduction activities of the {100}, {101}, and {001} surfaces of anatase TiO2. Langmuir. 29, 13647–13654 (2013)

    Article  CAS  PubMed  Google Scholar 

  383. Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature. 453, 638 (2008)

    Article  CAS  PubMed  Google Scholar 

  384. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., Wang, X.: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014)

    Article  CAS  PubMed  Google Scholar 

  385. Zhang, L., Jaroniec, M.: Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Appl. Surf. Sci. 430, 2–17 (2018)

    Article  CAS  Google Scholar 

  386. Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., He, J.: Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale. 5, 8326–8339 (2013)

    Article  CAS  PubMed  Google Scholar 

  387. Maeda, K.: Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013)

    Article  CAS  Google Scholar 

  388. Wang, S., Yun, J.-H., Luo, B., Butburee, T., Peerakiatkhajohn, P., Thaweesak, S., Xiao, M., Wang, L.: Recent progress on visible light responsive heterojunctions for photocatalytic applications. J. Mater. Sci. Technol. 33, 1–22 (2017)

    Article  CAS  Google Scholar 

  389. Zhang, Z., Yates, J.T.: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012)

    Article  CAS  PubMed  Google Scholar 

  390. Stevanović, V., Lany, S., Ginley, D.S., Tumas, W., Zunger, A.: Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. Phys. Chem. Chem. Phys. 16, 3706–3714 (2014)

    Article  PubMed  CAS  Google Scholar 

  391. Höffling, B., Schleife, A., Rödl, C., Bechstedt, F.: Band discontinuities at Si-TCO interfaces from quasiparticle calculations: comparison of two alignment approaches. Phys. Rev. B. 85, 035305 (2012)

    Article  CAS  Google Scholar 

  392. Van de Walle, C.G., Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature. 423, 626 (2003)

    Article  PubMed  CAS  Google Scholar 

  393. Pfeifer, V., Erhart, P., Li, S., Rachut, K., Morasch, J., Brötz, J., Reckers, P., Mayer, T., Rühle, S., Zaban, A., Mora Seró, I., Bisquert, J., Jaegermann, W., Klein, A.: Energy band alignment between anatase and rutile TiO2. J. Phys. Chem. Lett. 4, 4182–4187 (2013)

    Article  CAS  Google Scholar 

  394. Schleife, A., Fuchs, F., Rödl, C., Furthmüller, J., Bechstedt, F.: Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94, 012104 (2009)

    Article  CAS  Google Scholar 

  395. Deák, P., Aradi, B., Frauenheim, T.: Band lineup and charge carrier separation in mixed rutile-anatase systems. J. Phys. Chem. C. 115, 3443–3446 (2011)

    Article  CAS  Google Scholar 

  396. Höffling, B., Schleife, A., Fuchs, F., Rödl, C., Bechstedt, F.: Band lineup between silicon and transparent conducting oxides. Appl. Phys. Lett. 97, 032116 (2010)

    Article  CAS  Google Scholar 

  397. Tersoff, J.: Theory of semiconductor heterojunctions: the role of quantum dipoles. Phys. Rev. B. 30, 4874–4877 (1984)

    Article  CAS  Google Scholar 

  398. Hinuma, Y., Grüneis, A., Kresse, G., Oba, F.: Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B. 90, 155405 (2014)

    Article  CAS  Google Scholar 

  399. Franciosi, A., Van de Walle, C.G.: Heterojunction band offset engineering. Surf. Sci. Rep. 25, 1–140 (1996)

    Article  CAS  Google Scholar 

  400. Van de Walle, C.G., Martin, R.M.: Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B. 35, 8154–8165 (1987)

    Article  Google Scholar 

  401. Li, Y.-H., Walsh, A., Chen, S., Yin, W.-J., Yang, J.-H., Li, J., Da Silva, J.L.F., Gong, X.G., Wei, S.-H.: Revised Ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors. Appl. Phys. Lett. 94, 212109 (2009)

    Article  CAS  Google Scholar 

  402. Weston, L., Tailor, H., Krishnaswamy, K., Bjaalie, L., Van de Walle, C.G.: Accurate and efficient band-offset calculations from density functional theory. Comput. Mater. Sci. 151, 174–180 (2018)

    Article  CAS  Google Scholar 

  403. Sayle, T., Catlow, C., Sayle, D., Parker, S., Harding, J.: Computer simulation of thin film heteroepitaxial ceramic interfaces using a near-coincidence-site lattice theory. Philosop. Mag. A. 68, 565–573 (1993)

    Article  CAS  Google Scholar 

  404. Fisher, C., Matsubara, H.: Molecular dynamics simulations of interfaces between NiO and cubic ZrO2. Philos. Mag. 85, 1067–1088 (2005)

    Article  CAS  Google Scholar 

  405. Deskins, N.A., Kerisit, S., Rosso, K.M., Dupuis, M.: Molecular dynamics characterization of rutile-anatase interfaces. J. Phys. Chem. C. 111, 9290–9298 (2007)

    Article  CAS  Google Scholar 

  406. Ohno, T., Sarukawa, K., Tokieda, K., Matsumura, M.: Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 203, 82–86 (2001)

    Article  CAS  Google Scholar 

  407. Li, G., Gray, K.A.: The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339, 173–187 (2007)

    Article  CAS  Google Scholar 

  408. Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B. 107, 4545–4549 (2003)

    Article  CAS  Google Scholar 

  409. Xiong, G., Shao, R., Droubay, T.C., Joly, A.G., Beck, K.M., Chambers, S.A., Hess, W.P.: Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv. Funct. Mater. 17, 2133–2138 (2007)

    Article  CAS  Google Scholar 

  410. Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., Sokol, A.A.: Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798 (2013)

    Article  CAS  PubMed  Google Scholar 

  411. Zhang, Y.-Y., Lang, L., Gu, H.-J., Chen, S., Liu, Z.-P., Xiang, H., Gong, X.-G.: Origin of the type-II band offset between rutile and anatase titanium dioxide: classical and quantum-mechanical interactions between O ions. Phys. Rev. B. 95, 155308 (2017)

    Article  Google Scholar 

  412. Ju, M.-G., Sun, G., Wang, J., Meng, Q., Liang, W.: Origin of high photocatalytic properties in the mixed-phase TiO2: a first-principles theoretical study. ACS Appl. Mater. Interfaces. 6, 12885–12892 (2014)

    Article  CAS  PubMed  Google Scholar 

  413. Kullgren, J., Huy Huynh, A., Aradi, B., Frauenheim, T., Deák, P.: Theoretical study of charge separation at the rutile–anatase interface, physica status solidi. (RRL) – Rapid Res. Lett. 8, 566–570 (2014)

    CAS  Google Scholar 

  414. Zhao, W.-N., Zhu, S.-C., Li, Y.-F., Liu, Z.-P.: Three-phase junction for modulating electron–hole migration in anatase–rutile photocatalysts. Chem. Sci. 6, 3483–3494 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Ko, K.C., Bromley, S.T., Lee, J.Y., Illas, F.: Size-dependent level alignment between rutile and anatase TiO2 nanoparticles: implications for photocatalysis. J. Phys. Chem. Lett. 8, 5593–5598 (2017)

    Article  CAS  PubMed  Google Scholar 

  416. Kullgren, J., Aradi, B., Frauenheim, T., Kavan, L., Deák, P.: Resolving the controversy about the band alignment between rutile and anatase: the role of OH/H+ adsorption. J. Phys. Chem. C. 119, 21952–21958 (2015)

    Article  CAS  Google Scholar 

  417. Long, R., English, N.J., Prezhdo, O.V.: Photo-induced charge separation across the graphene–TiO2 Interface is faster than energy losses: a time-domain Ab initio analysis. J. Am. Chem. Soc. 134, 14238–14248 (2012)

    Article  CAS  PubMed  Google Scholar 

  418. Bukowski, B., Deskins, N.A.: The interactions between TiO2 and graphene with surface inhomogeneity determined using density functional theory. Phys. Chem. Chem. Phys. 17, 29734–29746 (2015)

    Article  CAS  PubMed  Google Scholar 

  419. Long, R., Prezhdo, O.V.: Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 136, 4343–4354 (2014)

    Article  CAS  PubMed  Google Scholar 

  420. Ribeiro Jr., M., Fonseca, L.R., Ferreira, L.G.: Accurate prediction of the Si/SiO2 Interface band offset using the self-consistent Ab initio DFT/LDA-1/2 method. Phys. Rev. B. 79, 241312 (2009)

    Article  CAS  Google Scholar 

  421. Sharia, O., Demkov, A.A., Bersuker, G., Lee, B.H.: Theoretical study of the insulator/insulator interface: band alignment at the SiO2/HfO2 junction. Phys. Rev. B. 75, 035306 (2007)

    Article  CAS  Google Scholar 

  422. Puthenkovilakam, R., Chang, J.P.: Valence band structure and band alignment at the ZrO2/Si interface. Appl. Phys. Lett. 84, 1353–1355 (2004)

    Article  CAS  Google Scholar 

  423. Alkauskas, A., Broqvist, P., Devynck, F., Pasquarello, A.: Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations. Phys. Rev. Lett. 101, 106802 (2008)

    Article  PubMed  CAS  Google Scholar 

  424. Baldereschi, A., Baroni, S., Resta, R.: Band offsets in lattice-matched heterojunctions: a model and first-principles calculations for GaAs/AlAs. Phys. Rev. Lett. 61, 734 (1988)

    Article  CAS  PubMed  Google Scholar 

  425. Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B. 39, 1871–1883 (1989)

    Article  Google Scholar 

  426. Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J.: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013)

    Article  CAS  Google Scholar 

  427. Yilmaz, H., Weiner, B.R., Morell, G.: Semiconductor-homojunction induction in single-crystal Gan nanostructures under a transverse electric field: Ab initio calculations. Phys. Rev. B. 81, 041312 (2010)

    Article  CAS  Google Scholar 

  428. Liu, M., Jing, D., Zhou, Z., Guo, L.: Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 4, 2278 (2013)

    Article  PubMed  Google Scholar 

  429. Pasumarthi, V., Liu, T., Dupuis, M., Li, C.: Charge carrier transport dynamics in W/Mo-doped BiVO4: first principles-based mesoscale characterization. J. Mater. Chem. A. 7, 3054–3065 (2018)

    Article  Google Scholar 

  430. Li, W., Liu, J., Bai, F.-Q., Zhang, H.-X., Prezhdo, O.V.: Hole trapping by iodine interstitial defects decreases free carrier losses in perovskite solar cells: a time-domain Ab initio study. ACS Energy Lett. 2, 1270–1278 (2017)

    Article  CAS  Google Scholar 

  431. Liu, J., Prezhdo, O.V.: Chlorine doping reduces electron–hole recombination in lead iodide perovskites: time-domain Ab initio analysis. J. Phys. Chem. Lett. 6, 4463–4469 (2015)

    Article  CAS  PubMed  Google Scholar 

  432. Wei, Y., Zhou, Z., Long, R.: Defects slow down nonradiative electron–hole recombination in TiS3 nanoribbons: a time-domain Ab initio study. J. Phys. Chem. Lett. 8, 4522–4529 (2017)

    Article  CAS  PubMed  Google Scholar 

  433. Long, R., English, N.J., Prezhdo, O.V.: Defects are needed for fast photo-induced electron transfer from a nanocrystal to a molecule: time-domain Ab initio analysis. J. Am. Chem. Soc. 135, 18892–18900 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NAD and PR acknowledge support from the National Science Foundation under grant #CBET-1704975. MD acknowledges many stimulating discussions with Prof. Can Li (Dalian Institute of Chemical Physics – DICP), Dr. Taifeng Liu (Henan University), and Mr. Viswanath Pasumarthi (University at Buffalo). MD’s contribution was supported in part by the University at Buffalo, the US Department of Energy, Office of Basic Energy Sciences, under Award Number(s) DE-SC0019086, and the 1000 Talent Scholar at DICP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Aaron Deskins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deskins, N.A., Rao, P.M., Dupuis, M. (2022). Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_15

Download citation

Publish with us

Policies and ethics