Skip to main content

Application of Remote Sensing and GIS for Risk Assessment in Monastir, Tunisia

  • Chapter
  • First Online:
Environmental Remote Sensing and GIS in Tunisia

Abstract

Climate change and urbanization have increased disaster risk in cities and urged the need for effective disaster risk management and risk-informed urban planning. However, up-to-date data that can support risk assessments is often lacking. The ever increasing spatial and temporal resolution of remote sensing sensors offers tremendous opportunities to support risk assessments in cities. In a pilot project for the coastal city of Monastir, Tunisia, multi-temporal optical remote sensing and spatial analysis have been used to support the assessment of current and future exposure, vulnerability, and risk associated with flash floods and coastal erosion. The results were made available in a web-based information system that enables stakeholders to develop response mechanisms and to integrate risk information into urban planning in order to meet the challenges associated with urban disaster risk. The chapter focusses on the role of remote sensing and GIS for urban risk assessments, drawing on lessons from Monastir, and discusses the potential transferability to other urban settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://data.worldbank.org/country/tunisia.

  2. 2.

    http://www.iso.org (ISO 19113:2002; ISO 19110:2002; ISO 19126:2009; ISO 19115:2003).

  3. 3.

    http://www.opengeospatial.org/docs/is.

  4. 4.

    MIKE FLOOD—Modelling Software MIKE21 (source: DHI—Wasy).

  5. 5.

    https://www.mdpi.com/journal/remotesensing/special_issues/EO_disaster.

References

  1. United Nations Human Settlements Programme, publisher (2016) Urbanization and development. Emerging futures: world cities report 2016. UN-Habitat, Nairobi, Kenya

    Google Scholar 

  2. Birkmann J, Welle T, Solecki W, Lwasa S, Garschagen M (2016) Boost resilience of small and mid-sized cities. Nature 537(7622):605–608. https://doi.org/10.1038/537605a

    Article  Google Scholar 

  3. Adelekan I, Johnson C, Manda M, Matyas D, Mberu BU, Parnell S et al (2015) Disaster risk and its reduction: an agenda for urban Africa. Int Dev Plan Rev 37(1):33–43. https://doi.org/10.3828/idpr.2015.4

    Article  Google Scholar 

  4. Dodman D, Leck H, Rusca M, Colenbrander S (2017) African urbanisation and urbanism: implications for risk accumulation and reduction. Int J Disaster Risk Reduction 26:7–15. https://doi.org/10.1016/j.ijdrr.2017.06.029

    Article  Google Scholar 

  5. Garschagen M, Romero-Lankao P (2015) Exploring the relation-ships between urbanization trends and climate change vulnerability. Clim Change 133(1):37–52. https://doi.org/10.1007/s10584-013-0812-6

    Article  Google Scholar 

  6. Ruocco A, Gasparini P, Weets G (2015) Urbanisation and climate change in Africa: setting the scene. In Urban vulnerability and climate change in Africa. Springer International Publishing, Cham (4)

    Google Scholar 

  7. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds)]. Cambridge University Press, Cam-bridge, UK, and New York, NY, USA, 582 p

    Google Scholar 

  8. USAID (2018) Climate risk profile Tunisia. Available from https://www.climatelinks.org/sites/default/files/asset/document/Tunisia_CRP.pdf

  9. Hagenlocher M, Schneiderbauer S, Sebesvari Z, Bertram M, Renner K, Renaud FG, Wiley H, Zebisch M (2018a) Climate risk assessment for eco-system-based adaptation: a guidebook for planners and practitioners. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn. Available from https://www.adaptationcommunity.net/wp-content/uploads/2018/06/giz-eurac-unu-2018-en-guidebook-climate-risk-asessment-eba.pdf

  10. Klijn F, Kreibich H, de Moel H, Penning-Rowsell E (2015) Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation. Mitig Adapt Strat Glob Change 20(6):845–864. https://doi.org/10.1007/s11027-015-9638-z

    Article  Google Scholar 

  11. Serrao-Neumann S, Crick F, Harman B, Schuch G, Choy DL (2015) Maximizing synergies between disaster risk reduction and climate change adaptation: potential enablers for improved planning outcomes. Environ Sci Policy 50:46–61. https://doi.org/10.1016/j.envsci.2015.01.017

    Article  Google Scholar 

  12. Armenakis C, Du EX, Natesan S, Persad RA, Zhang Y (2017) Flood risk assessment in urban areas based on spatial analytics and social factors. Geosci (Switzerland) 7(4):1–15. https://doi.org/10.3390/geosciences7040123

    Article  Google Scholar 

  13. Hagenlocher M, Renaud FG, Haas S, Sebesvari Z (2018b) Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards. Sci Total Environ 631–632:71–80

    Article  Google Scholar 

  14. Lianxiao, Morimoto T (2019) Spatial analysis of social vulnerability to floods based on the MOVE framework and information entropy method: case study of Katsushika Ward, Tokyo. Sustain (Switzerland) 11(2). https://doi.org/10.3390/su11020529

  15. Taubenböck H, Wurm M, Netzband M, Zwenzner H, Roth A, Rahman A, Dech S (2011) Flood risks in urbanized areas—multi-sensoral approaches using remotely sensed data for risk assessment. Nat Hazards Earth Syst Sci 11(2):431–444. https://doi.org/10.5194/nhess-11-431-2011

    Article  Google Scholar 

  16. Michellier C, Pigeon P, Kervyn F, Wolff E (2016) Contextualizing vulnerability assessment: a support to geo-risk management in central Africa. Nat Hazards 82(S1):27–42. https://doi.org/10.1007/s11069-016-2295-z

    Article  Google Scholar 

  17. Snoussi M, Niazi S, Khouakhi A, Raji O (2010) Climate change and sea-level rise: Agis-based vulnerability and impact assessment, the case of the Moroccan coast. In Geomatic solutions for coastal environments. Nova Science Publishers, New York

    Google Scholar 

  18. Eckert S, Jelinek R, Zeug G, Krausmann E (2012) Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Appl Geogr 32(2):714–723. https://doi.org/10.1016/j.apgeog.2011.08.003

    Article  Google Scholar 

  19. APAL Republique Tunisienne, Ministère de l’Environnement et du Developpement Durable, Agence de Protection et d’Aménagement du Littoral (2010) Expertise et elaboration des termes de references relative à l’erosion côtière du littoral de Monastir

    Google Scholar 

  20. European Commission (2016) Mapping guide for a European urban atlas v4.7, Product “Urban Atlas” from Copernicus “Urban Atlas Project” for the 2006 reference year and the “Urban Atlas” update and extension for the 2012 reference year

    Google Scholar 

  21. Kanonier A (ed) (2012) Raumplanung und Naturgefahrenmanagement, vol 19. LIT Verlag Münster

    Google Scholar 

  22. Engman ET (1986) Roughness coefficients for routing surface runoff. J Irrig Drainage Eng 112(1):39–53

    Article  Google Scholar 

  23. DEFRA (2006) Flood risks to people. Phase 2: Defra Environment Agency

    Google Scholar 

  24. APAL Republique Tunisienne, Ministère de l’Environnement et du Developpement Durable, Agence de Protection et d’Aménagement du Littoral (2009) Etude de protection de la 2ème tranche de la falaise de Monastir

    Google Scholar 

  25. APAL Republique Tunisienne, Ministère de l’Environnement et du Developpement Durable, Agence de Protection et d’Aménagement du Littoral (2011) Etude de la frange littorale de Monastir Strategie de Rehabilitation

    Google Scholar 

  26. URAM (2003) Plan d’occupation de la plage de Monastir. L’etude du pop de Monastir

    Google Scholar 

  27. European Commission; Organisation for Economic Co-operation and Development (2008) Handbook on constructing composite indicators. Methodology and user guide. OECD, Paris

    Google Scholar 

  28. Ghaffarian S, Kerle N, Filatova T (2018) Remote sensing-based proxies for urban disaster risk management and resilience: a review. Remote Sens 10(11):1760

    Article  Google Scholar 

Download references

Acknowledgements

The research is part of the project UD-RASP (grant no. ECHO/SUB/2016/740186/PREV19) funded by European Commission Directorate-General for European Civil Protection and Humanitarian Aid Operations (DG ECHO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicitas Bellert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bellert, F. et al. (2021). Application of Remote Sensing and GIS for Risk Assessment in Monastir, Tunisia. In: Khebour Allouche, F., Negm, A.M. (eds) Environmental Remote Sensing and GIS in Tunisia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-63668-5_10

Download citation

Publish with us

Policies and ethics