Skip to main content

The Role of Insulin Resistance in Benign Breast Disease

  • Chapter
  • First Online:
Impact of Polycystic Ovary, Metabolic Syndrome and Obesity on Women Health

Part of the book series: ISGE Series ((ISGE))

  • 522 Accesses

Abstract

Main regulators of breast metabolism are estradiol, progesterone, prolactin, growth hormone, and insulin-like growth factor 1 (IGF-1) [1]. They control cell function, proliferation, and differentiation activating intracellular signaling cascade (Erk, Akt, JNK, and Ark/Stat) of breast tissue [2]. Estrogen receptor (ER) expression in the breast is stable and differs relatively little in correlation with reproductive status, menstrual cycle phase, or exogenous hormones [3]. Estrogens have apocrine, paracrine, and intercrine effects. Receptors for estradiol are present in fibroblast, epithelial cells, adipocytes, and stromal tissue. Intramammary concentration of estradiol is 20 times higher compared to the level in the blood. Estradiol increases number of progesterone receptors, epithelial proliferation in the luteal phase, galactophore differentiation, connective tissue development, and growth hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hynes NE, Watson CJ. Mammary gland growth factors: roles in normal development and in cancer. Cold Spring Herb Perspect Bio. 2010;2:8–11.

    Google Scholar 

  2. Rawlings JS, Rosler KM, Harrison DA. The JAK/STST signaling pathway. J Cell Sci. 2004;117:1281–3.

    Article  CAS  Google Scholar 

  3. Haslam S, Osuch J. Hormones and breast cancer in postmenopausal women. Breast Dis. 2006;42:69.

    Google Scholar 

  4. Houdebine LM. Djiane J, Dusanter-Fourt et al.Hormonal action controlling mammary activity. J Daily Sci. 1985;68:489–560.

    Article  CAS  Google Scholar 

  5. Aupperlee MD, Leipprandt JR, Bennet JM, et al. Amphiregulin mediates progesterone induced mammary ductal development during puberty. Breast Cancer Res. 2013;15:44–7.

    Article  Google Scholar 

  6. Diamanti Kandarakis E, Dunaif A. The effects of old, new and emergency medicines on metabolic abberation in PCOS. Endocr Rev 2012; l33:981–1030.

    Google Scholar 

  7. Catsburg C, Gunter M, Chen C, et al. Insulin, estrogen, inflammatory markers and risk of benign proliferative breast disease. Cancer Res. 2014;74:3248–58.

    Article  CAS  Google Scholar 

  8. Zhou J, Ng S, Adesanya-Famuiya O, et al. Testosterone inhibits estrogen-induced mammary epithelial proliferation and suppress estrogen receptor expression. FASEB J. 2000;14:1725–30.

    Article  CAS  Google Scholar 

  9. Welsh J. Vitamin D metabolism in mammary gland and breast cancer. Mol Cell Enbdocrinol. 2011;347:55–60.

    Article  CAS  Google Scholar 

  10. Qin W, Smith C, Jensen M, et al. Vitamin D favourably alters the cancer promoting prostaglandin cascade. Anticancer Res. 2013;33:4496–9.

    Google Scholar 

  11. Kahn BB, Flier JS. Obesity and insulin resistance. Clin Invest. 2000;106:473–81.

    Article  CAS  Google Scholar 

  12. Genazzani AD, Ricchieri F, Prati A, et al. Differential insulin response to myoinositol administration in obese PCOS patients. Gynecol Endocrinol. 2012;28:969–73.

    Article  CAS  Google Scholar 

  13. Slijepcevic D. Stres. Ur. Sekanic D, Kremen, Beograd, 1993.

    Google Scholar 

  14. Pernicova I, Korbonis M. Metforin – mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10:577–86.

    Article  Google Scholar 

  15. Pearce EL. Enhance CD-8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460:103–7.

    Article  CAS  Google Scholar 

  16. Marina LJ, Ivovic M, Vujovic S, et al. Luteinizing hormone and insulin resistance in menopausal patients with adrenal incidentalomas. The cause-effect relationship? Clin Endocrinol. 2018;4:541–8.

    Article  Google Scholar 

  17. Chu DT, Phuong TN. The effect of adipocytes on the regulation of breast in the tumor microinvorenment: an update. Cell. 2019;8:857–60.

    Article  CAS  Google Scholar 

  18. Ness J, Sedghinasab M, Moe RE, et al. Identification of multiple proliferative growth factors in breast cyst fluid. Am J Surg. 2014;166:237–43.

    Article  Google Scholar 

  19. Burch JB, Walling M, Rush A, et al. Melatonin and estrogen in breast cyst fluid. Breast Cancer Res Treat. 2007;103:331–41.

    Article  CAS  Google Scholar 

  20. Vujovic S. Benign Breast disease during women;s life. In ISGE series: Pre-menopause, menopause and Beyond. Vol 5, Frontiers in Gynecological endocrinology. Editors: Birkhauser M, Genazzani AR, Springer, 2018: 215–221.

    Google Scholar 

  21. Brkic M, Vujovic S, Franic-Ivanisevic M, et al. The influence of progesterone gel therapy in the treatment of fibrocystic breats disease. Open J Obstet Gynecol. 2016;6:334–41.

    Article  CAS  Google Scholar 

  22. Foidart JM, Cohn C, Denoo X. Estrogen and progesterone result the proliferation of human breast epithelial cells. Fertil Steril. 1998;69:963–9.

    Article  CAS  Google Scholar 

  23. Nappi C, Affinitio PO, Carlo D, et al. Double blind control trial of progesterone vaginal cream treatment of cyclical mastalgia in women with benign breast disease. J Endocrinol Investig. 1992;15:801–6.

    Article  CAS  Google Scholar 

  24. Chang KJ, Lee TT, Linares-Cruz G, et al. Et al. influences of percutaneous administration of estradiol and progesterone on human breast epithelial cell cycle in vivo. Fertil Steril. 1995;63:735–91.

    Article  Google Scholar 

  25. Yan W, Zhang Y, Zhao E, et al. Association between the MTHFR C667T polymorphism and breast carcinoma risk: a meta analysis of 23 case control studies. The Breast J. 2016;22:593–4.

    Article  CAS  Google Scholar 

  26. Carrol JS, Hickey TE, Tarulli GA, et al. Deciphering the divergent roles of progesterone in breast cancer. Nat Rev Cancer. 2017;17:54–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vujovic, S. et al. (2021). The Role of Insulin Resistance in Benign Breast Disease. In: Genazzani, A.R., Ibáñez, L., Milewicz, A., Shah, D. (eds) Impact of Polycystic Ovary, Metabolic Syndrome and Obesity on Women Health. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-030-63650-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63650-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63649-4

  • Online ISBN: 978-3-030-63650-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics