Skip to main content

The Brain Phenotype in Polycystic Ovary Syndrome (PCOS): Androgens, Anovulation, and Gender

  • Chapter
  • First Online:
Impact of Polycystic Ovary, Metabolic Syndrome and Obesity on Women Health

Part of the book series: ISGE Series ((ISGE))

Abstract

Polycystic ovary syndrome (PCOS) is a common condition with reproductive and metabolic features. Recent studies confirmed that women with PCOS have multiple genetic allelic variants that are independently associated with hyperandrogenism, gonadotropin regulation, timing of menopause, depression, and metabolic disturbances, including insulin resistance [1]. Of note, the data cited above showed that not all women with PCOS possess the full complement of the 14 genetic variants identified. Genetic heterogeneity results in clinical heterogeneity. We have long recognized that there is a spectrum of clinical presentation, with some women having a more pronounced reproductive phenotype and others presenting primarily with metabolic features. Despite variation related to PCOS genotype and phenotype, however, two long-recognized pathogenic themes remain the same: excess androgen exposure and insulin resistance. Since androgens and insulin modulate of brain architecture and function, it is not surprising that PCOS is associated with a brain phenotype, but also one that presents variably. Building on the notion that the brain is a target of hormones of all classes, in this chapter we characterize the brain phenotype in PCOS and explore the evidence that the brain phenotype is the result of androgen exposure that not only predisposes to anovulation and obesity but also has the potential to skew gender identity and sexual orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):e1007813. https://doi.org/10.1371/journal.pgen.1007813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berga SL, Guzick DS, Winters SJ. Increased luteinizing hormone and alpha-subunit secretion in women with hyperandrogenic anovulation. J Clin Endocrinol Metab. 1993;77:895–901.

    CAS  PubMed  Google Scholar 

  3. Kalro BN, Loucks TL, Berga SL. Neuromodulation in polycystic ovary syndrome. Obstet Gynecol Clin N Am. 2001;28:35–62.

    Article  CAS  Google Scholar 

  4. Gross KM, Matsumoto AM, Berger RE, Bremner WJ. Increased frequency of pulsatile luteinizing hormone-releasing hormone administration selectively decreases follicle-stimulating hormone levels in men with idiopathic azoospermia. Fertil Steril. 1986;45:392–6.

    Article  CAS  PubMed  Google Scholar 

  5. Daniels TL, Berga SL. Resistance of gonadotropin releasing hormone drive to sex steroid-induced suppression in hyperandrogenic anovulation. J Clin Endocrinol Metab. 1997;82:4179–83.

    CAS  PubMed  Google Scholar 

  6. Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC. Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab. 1998;83:582–90.

    CAS  PubMed  Google Scholar 

  7. Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, Marshall JC. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab. 2000;85:4047–52.

    CAS  PubMed  Google Scholar 

  8. Eagleson CA, Bellows AB, Hu K, Gingrich MB, Marshall JC. Obese patients with polycystic ovary syndrome: evidence that metformin does not restore sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by ovarian steroids. J Clin Endocrinol Metab. 2003;88:5158–62.

    Article  CAS  PubMed  Google Scholar 

  9. Dungan HM, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology. 2006;147:1154–8.

    Article  CAS  PubMed  Google Scholar 

  10. Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology. 2008;149:4387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Navarro VM, Kaiser UB. Metabolic influences on neuroendocrine regulation of reproduction. Curr Opin Endocrinol Diabetes Obes. 2013;20:335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michopoulos V, Embree M, Reding K, Sanchez MM, Toufexis D, Votaw JR, Voll RJ, Goodman MM, Rivier J, Wilson ME, Berga SL. CRH receptor antagonism reverses the effect of social subordination upon Central GABAA receptor binding in estradiol-treated ovariectomized female rhesus monkeys. Neuroscience. 2013;250:300–8.

    Article  CAS  PubMed  Google Scholar 

  13. Esparza LA, Schafer D, Ho BS, Thackray VG, Kauffman AS. Hyperactive LH pulses and elevated kisspeptin and neurokinin B gene expression in the arcuate nucleus of a PCOS mouse model. Endocrinology 161(4). Pii: bqaa018. 2020; https://doi.org/10.1210/endocr/bqaa018.

  14. Martin C, Navarro VM, Simavli S, Vong L, Carroll RS, Lowell BB, Kaiser UB. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J Neurosci. 2014;34:6047–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Moore AM, Prescott M, Marshall CJ, Yip SH, Campbell RE. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc Natl Acad Sci U S A. 2015;112:596–601.

    Article  CAS  PubMed  Google Scholar 

  16. Pielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin-releasing hormone neuron firing activity in females and interfere with progesterone negative feedback. Endocrinology. 2006;147:1474–9.

    Article  CAS  PubMed  Google Scholar 

  17. Porter DT, Moore AM, Cobern JA, Padmanabhan V, Goodman RL, Coolen LM, Lehman MN. Prenatal testosterone exposure alters GABAergic synaptic inputs to GnRH and KNDy neurons in a sheep model of polycystic ovarian syndrome. Endocrinology. 2019;160:2529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruddenklau A, Campbell RE. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology. 2019;160:2230–42.

    Article  CAS  PubMed  Google Scholar 

  19. Stephens SB, Tolson KP, Rouse ML Jr, Poling MC, Hashimoto-Partyka MK, Mellon PL, Kauffman AS. Absent progesterone signaling in kisspeptin neurons disrupts the LH surge and impairs fertility in female mice. Endocrinology. 2015;156:3091–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caldwell ASL, Edwards MC, Desai R, Jimenez M, Gilchrist RB, Handelsman DJ, Walters KA. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proc Natl Acad Sci U S A. 2017;114:E3334–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawwass JF, Sanders KM, Loucks TL, Rohan LC, Berga SL. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome. Hum Reprod. 2017;32:1450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pinola P, Morin-Papunen LC, Bloigu A, Puukka K, Ruokonen A, Järvelin MR, Franks S, Tapanainen JS, Lashen H. Anti-Müllerian hormone: correlation with testosterone and oligo- or amenorrhoea in female adolescence in a population-based cohort study. Hum Reprod. 2014;29:2317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cimino I, Casoni F, Liu X, Messina A, Parkash J, Jamin SP, Catteau-Jonard S, Collier F, Baroncini M, Dewailly D, Pigny P, Prescott M, Campbell R, Herbison AE, Prevot V, Giacobini P. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun. 2016;7:10055. https://doi.org/10.1038/ncomms10055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elting MW, Korsen TJ, Rekers-Mombarg LT, Schoemaker J. Women with polycystic ovary syndrome gain regular menstrual cycles when ageing. Hum Reprod. 2000;15:24–8.

    Article  CAS  PubMed  Google Scholar 

  25. Nikolaou D, Gilling-Smith C. Early ovarian ageing: are women with polycystic ovaries protected? Hum Reprod. 2004;19:2175–9.

    Article  CAS  PubMed  Google Scholar 

  26. Forslund M, Landin-Wilhelmsen K, Schmidt J, Brännström M, Trimpou P, Dahlgren E. Higher menopausal age but no differences in parity in women with polycystic ovary syndrome compared with controls. Acta Obstet Gynecol Scand. 2019;98:320–6.

    Article  CAS  PubMed  Google Scholar 

  27. Minooee S, Ramezani Tehrani F, Rahmati M, Mansournia MA, Azizi F. Prediction of age at menopause in women with polycystic ovary syndrome. Climacteric. 2018;21:29–34.

    Article  CAS  PubMed  Google Scholar 

  28. Hudecova M, Holte J, Olovsson M, Sundström PI. Long-term follow-up of patients with polycystic ovary syndrome: reproductive outcome and ovarian reserve. Hum Reprod. 2009;24:1176–83.

    Article  CAS  PubMed  Google Scholar 

  29. Mellembakken JR, Berga SL, Kilen M, Tanbo TG, Abyholm T, Fedorcsák P. Sustained fertility from 22 to 41 years of age in women with polycystic ovarian syndrome. Hum Reprod. 2011;26:2499–504.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Morford JJ, Wu S, Mauvais-Jarvis F. The impact of androgen actions in neurons on metabolic health and disease. Mol cell Endocrinol. 2018;465:92–102.

    Article  CAS  PubMed  Google Scholar 

  31. Navarro G, Allard C, Morford JJ, Xu W, Liu S, Molinas AJ, Butcher SM, Fine NH, Blandino-Rosano M, Sure VN, Yu S, Zhang R, Münzberg H, Jacobson DA, Katakam PV, Hodson DJ, Bernal-Mizrachi E, Zsombok A, Mauvais-Jarvis F. (2018). Androgen excess in pancreatic β cells and neurons predisposes female mice to type 2 diabetes. JCI Insight 3(12). Pii: 98607. https://doi.org/10.1172/jci.insight.98607.

  32. Cahill L. His brain, her brain. Sci Am. 2005;292:40–7.

    Article  PubMed  Google Scholar 

  33. Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, Faraone SV, Tsuang MT. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex. 2001;11:490–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cahill L, Uncapher M, Kilpatrick L, Alkire MT, Turner J. Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: an FMRI investigation. Learn Mem. 2004;11:261–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 2011;14:677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agrawal R, Sharma S, Bekir J, Conway G, Bailey J, Balen AH, Prelevic G. Prevalence of polycystic ovaries and polycystic ovary syndrome in lesbian women compared with heterosexual women. Fertil Steril. 2004;82:1352–7.

    Article  PubMed  Google Scholar 

  37. Bosinski HA, Peter M, Bonatz G, Arndt R, Heidenreich M, Sippell WG, Wille R. A higher rate of hyperandrogenic disorders in female-to-male transsexuals. Psychoneuroendocrinology. 1997;22:361–80.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer-Bahlburg HF, Dolezal C, Baker SW, New MI. Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Arch Sex Behav. 2008;37:85–99.

    Article  PubMed  Google Scholar 

  39. Pasterski V, Zucker KJ, Hindmarsh PC, Hughes IA, Acerini C, Spencer D, Neufeld S, Hines M. Increased cross-gender identification independent of gender role behavior in girls with congenital adrenal hyperplasia: results from a standardized assessment of 4- to 11-year-old children. Arch Sex Behav. 2015;44:1363–75.

    Article  PubMed  Google Scholar 

  40. Lentini E, Kasahara M, Arver S, Savic I. Sex differences in the human brain and the impact of sex chromosomes and sex hormones. Cereb Cortex. 2013;23:2322–36.

    Article  CAS  PubMed  Google Scholar 

  41. Savic I. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes. Front Neurosci. 2014;8:329. https://doi.org/10.3389/fnins.2014.00329. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  42. Savic I, Berglund H, Gulyas B, Roland P. Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron. 2001;31:661–8.

    Article  CAS  PubMed  Google Scholar 

  43. Berglund H, Lindström P, Savic I. Brain response to putative pheromones in lesbian women. Proc Natl Acad Sci U S A. 2006;103:8269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Savic I, Berglund H, Lindström P. Brain response to putative pheromones in homosexual men. Proc Natl Acad Sci U S A. 2005;102:7356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Savic I, Lindström P. PET and MRI show differences in cerebral asymmetry and functional connectivity between homo- and heterosexual subjects. Proc Natl Acad Sci U S A. 2008;105:9403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rees DA, Udiawar M, Berlot R, Jones DK, O'Sullivan MJ. White matter microstructure and cognitive function in young women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2016;101:314–23.

    Article  CAS  PubMed  Google Scholar 

  47. Marsh CA, Berent-Spillson A, Love T, Persad CC, Pop-Busui R, Zubieta JK, Smith YR. Functional neuroimaging of emotional processing in women with polycystic ovary syndrome: a case-control pilot study. Fertil Steril. 2013;100:200–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kawwass JF, Loucks T, Berga SL. An algorithm for treatment of infertile women with polycystic ovary syndrome. Middle East Fertil Soc J. 2010;15:231–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Berga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berga, S.L. (2021). The Brain Phenotype in Polycystic Ovary Syndrome (PCOS): Androgens, Anovulation, and Gender. In: Genazzani, A.R., Ibáñez, L., Milewicz, A., Shah, D. (eds) Impact of Polycystic Ovary, Metabolic Syndrome and Obesity on Women Health. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-030-63650-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63650-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63649-4

  • Online ISBN: 978-3-030-63650-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics