Skip to main content

Laser-Induced Surface Modification for Photovoltaic Device Applications

  • Reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

High-power lasers are extensively used for the fabrication of photovoltaic devices, medical devices, electronics and MEMS packaging, photonic device integration, consumer electronic devices such as smartphones, organic light-emitting diodes (OLED), and semiconductor devices and in the area of printed circuit boards. In the area of photovoltaic device fabrication, lasers are used for microtexturing of surfaces to improve light-trapping properties, laser doping to make n- and p-type semiconductors, electrical contacts, electrical isolation, sintering of micro-/nanoparticles for thin-film fabrication, laser drilling, laser welding, laser annealing, and direct writing in photoresist. A large number of device applications of high-power lasers are due to the ability to perform microscale processes without physical contact. The examples of laser processing for photovoltaic device fabrication applications are provided. Some of the described laser processes are currently used in industrial manufacturing applications, and new processes are being developed to provide a low-cost manufacturing solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldridge T (2012) Laser sintering of Si-Ge nanoparticles for thermoelectric materials. PhD thesis, University of Virginia

    Google Scholar 

  • Boyd IW, Wilson JIB (1980) Laser annealing for semiconductor devices. Nature 287(5780):278–278

    Article  ADS  Google Scholar 

  • Bruton T, Mason N, Roberts S, Hartley ON, Gledhill S, Fernandez J, Russell R, Warta W, Glunz S, Schultz O, Hermle M, Willeke G (2003) Towards 20% efficient silicon solar cells manufactured at 60 MWp per annum. In: Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan

    Google Scholar 

  • Chen Y, Munoz-Martin D, Morales M, Molpeceres C, Sánchez-Cortezon E, Murillo-Gutierrez J (2016) Laser induced forward transfer of high viscosity silver paste for new metallization methods in photovoltaic and flexible electronics industry. Phys Procedia 83:204–210

    Article  ADS  Google Scholar 

  • Colina M, Morales-Vilches A, Voz C, Martín I, Ortega P, Orpella A, López G, Alcubilla R (2015) Laser induced forward transfer for front contact improvement in silicon heterojunction solar cells. Appl Surf Sci 336:89–95

    Article  ADS  Google Scholar 

  • Colville F (2009) Laser processing enables high-efficiency silicon-cell concepts. In: Renewable energy world. https://www.renewableenergyworld.com/2009/03/01/laser-processing-enables-high-efficiency-silicon-cell-concepts/#gref

  • Engelhardt J, Kromer H, Hahn G, Terheiden B (2019) Laser doping from as-deposited CVD layers for high-efficiency crystalline silicon solar cells. AIP Conf Proc 2147:070002

    Article  Google Scholar 

  • Fisher AK, Mony S, Wilkes G, Gupta M, Bertoni M, Holman Z (2019) Novel Al conductive back sheets and interconnects for back-contact silicon solar cells. In: 8th metallization and interconnection workshop, Konstanz

    Google Scholar 

  • Glunz SW, Schneiderlochner E, Kray D, Grohe A, Hermle M, Kampwerth H, Preu R, Willeke G (2004) Laser-fired contact silicon solar cells on p- and n-substrates. In: 19th EUPVSEC, Paris, pp 408–411

    Google Scholar 

  • Graf M, Nekarda J, Eberlein D, Wöhrle N, Preu R, Böhme R, Grosse T (2014) Progress in laser-based foil metallization for industrial PERC solar cells. In: 29th EUPVSEC, Amsterdam, pp 532–535

    Google Scholar 

  • Graf M, Eberlein D, Nagel H, Nekarda J, Böhme R, Streek A, Preu R (2015) Foil metallization process for PERC solar cells towards industrial feasibility. In: 31st EUPVSEC. Hamburg, pp 386–389

    Google Scholar 

  • Gupta MC, Carlson DE (2015) Laser processing of materials for renewable energy applications. MRS Energy Sustain 2:E2

    Article  Google Scholar 

  • Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R (2018) Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Sol Energy Mater Sol Cells 186:184–193

    Article  Google Scholar 

  • Hallam B, Wenham S, Lee H, Lee E, Lee H, Kim J, Shin J (2011) Effect of edge junction isolation on the performance of laser doped selective emitter solar cells. Sol Energy Mater Sol Cells 95(12):3557–3563

    Article  Google Scholar 

  • Haupt O, Schütz V, Kling R, Nagel H, Bagus S, Hefner W, Schmidt W, Massa S, Stute U, Schlenker T (2009) Improved laser edge isolation of crystalline silicon solar cells using a high power picosecond laser. In: 28th international congress on applications of lasers and electro-optics, Laser Institute of America, vol 1. pp 1181–1187, Orlando, Florida, USA

    Google Scholar 

  • Her TH, Finlay RJ, Wu C, Deliwala S, Mazur E (1998) Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett 73(12):1673–1675

    Article  ADS  Google Scholar 

  • Iyengar VV, Gupta MC (2009) Laser assisted doping for photovoltaic applications. J Laser Micro/Nanoeng 4(2):89–94

    Article  Google Scholar 

  • Jan A, Reeves BA, van de Burgt Y, Hayes GJ, Clemens BM (2018) Threshold fluence measurement for laser liftoff of InP thin films by selective absorption. Adv Eng Mater 20:1700624

    Article  Google Scholar 

  • Jeon T, Jin HM, Lee SH, Lee JM, Park HI, Kim MK, Lee KJ, Shin B, Kim SO (2016) Laser crystallization of organic-inorganic hybrid perovskite solar cells. ACS Nano 10(8):7907–7914

    Article  Google Scholar 

  • Kim DH, Whitaker JB, Li Z, van Hest MFAM, Zhu K (2018) Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule 2(8):1437–1451

    Article  Google Scholar 

  • Kray D, Hopman S, Spiegel A, Richerzhagen B, Willeke GP (2007) Study on the edge isolation of industrial silicon solar cells with waterjet-guided laser. Sol Energy Mater Sol Cells 91(17):1638–1644

    Article  Google Scholar 

  • Kurella A, Dahotre NB (2005) Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20(1):5–50

    Article  Google Scholar 

  • Li Z, Nayak BK, Iyengar VV, McIntosh D, Zhou Q, Gupta MC, Campbell JC (2011) Laser-textured silicon photodiode with broadband spectral response. Appl Opt 50(17):2508–2511

    Article  ADS  Google Scholar 

  • Lin Y, Van Kerschaver E, Cabanas-Holmen K (2013) Laser sintering of screen-printed silver paste for silicon solar cells. In: 39th PVSC, pp 3445–3447, Tampa, Florida, USA

    Google Scholar 

  • LONGi Solar (2019) LONGi Solar sets new bifacial mono-PERC solar cell world record at 24.06 percent. In: LONGi Solar. https://en.longi-solar.com/home/events/press_detail/id/89_LONGi_Solar_sets_new_bifacial_mono-PERC_solar_cell_world_record_at_24.06_percent.html

  • Lv J, Zhang T, Zhang P, Zhao Y, Li S (2018) Review application of nanostructured black silicon. Nanoscale Res Lett 13:110

    Article  ADS  Google Scholar 

  • Masmitja G, Ortega P, Martín I, López G, Voz C, Alcubilla R (2016) IBC c-Si(n) solar cells based on laser doping processing for selective emitter and base contact formation. Energy Procedia 92:956–961

    Article  Google Scholar 

  • Moon YJ, Kang H, Kang K, Hwang JY, Moon SJ (2013) Optimal irradiance for sintering of inkjet-printed ag electrodes with a 532nm CW laser. In: Laser material processing for solar energy devices II, 88260A, San Diego, California, USA

    Google Scholar 

  • Nayak BK, Iyengar VV, Gupta MC (2011) Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures. Prog Photovolt Res Appl 19(6):631–639

    Article  Google Scholar 

  • NREL (2019) Best research-cell efficiency chart, Photovoltaic research, National Renewable Energy Laboratory (NREL)

    Google Scholar 

  • Palma AL, Matteocci F, Agresti A, Pescetelli S, Calabro E, Vesce L, Christiansen S, Schmidt M, Di Carlo A (2017) Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J Photovoltaics 7(6):1674–1680

    Article  Google Scholar 

  • Poate JM, Mayer JW (1982) Laser annealing of semiconductors. Academic Press/Elsevier. New York, USA

    Google Scholar 

  • Sánchez-Aniorte I, Munoz-Martín D, Morales M, Ortega P, Martín I, Colina M, Alcubilla R, Molpeceres C (2012) Influence of laser wavelength on laser-fired contacts for crystalline silicon solar cells. In: 27th EUPVSEC, pp 1688–1691, Frankfurt, Germany

    Google Scholar 

  • Scaraggi M, Mezzapesa FP, Carbone G, Ancona A, Tricarico L (2013) Friction properties of lubricated laser-microtextured-surfaces: an experimental study from boundary- to hydrodynamic-lubrication. Tribol Lett 49:117–125

    Article  Google Scholar 

  • Schneiderlöchner E, Preu R, Lüdemann R, Glunz SW (2002) Laser-fired rear contacts for crystalline silicon solar cells. Prog Photovolt Res Appl 10:29–34

    Article  Google Scholar 

  • Schulte-Huxel H, Petermann J-H, Blankemeyer S, Steckenreiter V, Kajari-Schroeder S, Brendel R (2016) Simultaneous contacting and interconnection of passivated emitter and rear solar cells. Energy Procedia 92:515–522

    Article  Google Scholar 

  • Serra P, Piqué A (2019) Laser-induced forward transfer: fundamentals and applications. Adv Mater Technol 4(1):1800099

    Article  Google Scholar 

  • Simonds BJ, Palekis V, Van Devener B, Ferekides C, Scarpulla MA (2014) Pulsed laser induced ohmic back contact in CdTe solar cells. Appl Phys Lett 104(14):141604

    Article  ADS  Google Scholar 

  • Simonds BJ, Meadows HJ, Misra S, Ferekides C, Dale PJ, Scarpulla MA (2015) Laser processing for thin film chalcogenide photovoltaics: a review and prospectus. J Photonics Energy 5(1):050999

    Article  Google Scholar 

  • Sun Z, Gupta MC (2018a) A study of laser-induced surface defects in silicon and impact on electrical properties. J Appl Phys 124(22):223103

    Article  Google Scholar 

  • Sun Z, Gupta MC (2018b) Laser processing of silicon for photovoltaics and structural phase transformation. Appl Surf Sci 456:342–350

    Article  ADS  Google Scholar 

  • Tegio R (2018) The difference between standard and PERC solar cells. Editorial Feature: AZO Materials, AZoNetwork UK Ltd., Manchester, United Kingdom. https://www.azom.com/article.aspx?ArticleID=16715

  • Tomizawa Y, Imamura T, Soeda M, Ikeda Y, Shiro T (2015) Laser doping of boron-doped Si paste for high-efficiency silicon solar cells. Jpn J Appl Phys 54(8S1):08KD06

    Article  Google Scholar 

  • Tomizawa Y, Ikeda Y, Shiro T (2016) Development of n-type selective emitter silicon solar cells by laser doping using boron-doped silicon paste. Energy Procedia 92:419–426

    Article  Google Scholar 

  • Wang S (2018) Laser technology in the fabrication of high efficiency solar cells. PhD thesis, University of New South Wales

    Google Scholar 

  • Wang L, Carlson DE, Gupta MC (2013a) All-laser-transfer process for silicon solar cells. In: 39th PVSC, pp 2284–2287, Tampa, Florida, USA

    Google Scholar 

  • Wang L, Carlson DE, Gupta MC (2013b) Investigation of metal contacts for silicon solar cells using laser processed 8 μm thick Al foils. In: Laser material processing for solar energy devices II, 882604, San Diego, California, USA

    Google Scholar 

  • Wang H, Yao YL, Chen H (2015) Removal mechanism and defect characterization for glass-side laser scribing of CdTe/CdS multilayer in solar cells. J Manuf Sci Eng 137(6):061006

    Article  Google Scholar 

  • Weber J, Klinger V, Brand A, Gutscher S, Wekkeli A, Mondon A, Oliva E, Dimroth F (2017) Mesa separation of GaInP solar cells by picosecond laser ablation. IEEE J Photovoltaics 7(1):335–339

    Article  Google Scholar 

  • Wilkes GC, Deng X, Choi JJ, Gupta MC (2018) Laser annealing of TiO2 electron-transporting layer in perovskite solar cells. ACS Appl Mater Interfaces 10(48):41312–41317

    Article  Google Scholar 

  • You P, Li G, Tang G, Cao J, Yan F (2020) Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ Sci 13(4):1187–1196

    Google Scholar 

  • Zhou Z, Perez-Wurfl I, Simonds BJ (2018) Rapid, deep dopant diffusion in crystalline silicon by laser-induced surface melting. Mater Sci Semicond Process 86:8–17

    Article  Google Scholar 

  • Zielke D, Sylla D, Neubert T, Brendel R, Schmidt J (2013) Direct laser texturing for high-efficiency silicon solar cells. IEEE J Photovoltaics 3(2):656–661

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the NSF Industry University Cooperative Research Center (IUCRC) for Laser and Plasma for Advanced Manufacturing program for their support. The NSF support under the Award No. ECCS-1408443 and award No. CMMI-1436775 is acknowledged. Thanks to the NASA Langley Professor Program for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mool C. Gupta .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, M.C. (2021). Laser-Induced Surface Modification for Photovoltaic Device Applications. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-63647-0_16

Download citation

Publish with us

Policies and ethics