Skip to main content

On Geothermal Problems of the Marginal Seas

  • Chapter
  • First Online:
Heat-Mass Transfer and Geodynamics of the Lithosphere
  • 346 Accesses

Abstract

The distribution of heat flow in the marginal seas, as well as on the continents and oceans, depends on the age of the last stage of tectonic-magmatic activity. The experimental dependences for mid-ocean ridges and back-arc basins practically coincide. Such a coincidence provides a basis for concluding on the applicability of fundamental theoretical developments of the spreading concept to back-arc basins, in particular, to estimating the time of their formation. The most important geological factors affecting the deviation of the heat flow of the marginal seas from the functional heat flow – age dependence for the oceanic lithosphere are: hydrothermal circulation, rapid sedimentation, and repeated tectonomagmatic activation (one- or two-stage cooling scenario of the lithosphere).

Comparison of thermal regime of marginal seas and island-arc systems leads to general conclusions:

Mode of subduction at island-arc systems and steepness of the Benioff zone slope are depending on geological features of colliding slabs, such as basement age, thermal regime, seafloor topography and sediment thickness of the underthrusting slab; relative speed and angle of lithospheric plates convergence.

Thermal regime of subduction zone is reflected in the petrological and geochemical features of island arc and back-arc magmatism. An additional powerful heat source near the contact of the underthrusting plate with the mantle wedge located above, leads to melting at depths about 80–120 km. Possible heat sources are the adiabatic compression of the substance of the moving plate and phase transitions.

The release of water during the dehydration of serpentinites and other water-containing minerals leads to mutually compensating effects: a decrease of the solidus temperature on the one hand, the absorption of heat and a decrease in frictional heat generation on the other. In the overriding block, exothermic reactions of retrograde metamorphism restrain the cooling caused by the advance of the cold block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt JC, Muehlenbachs K, Honnorez JJ (1986) Oxygen isotopic composition and calculated equilibrium temperatures of formation for vein carbonates from DSDP Hole 504B. PANGAEA. https://doi.org/10.1594/PANGAEA.713297

  2. Anderson DL, Dzievonsky AM (1984) Seismic tomography. In the world of science. No. 12, pp 16–26 (in Russian)

    Google Scholar 

  3. Anderson RN (1975) Heat flow in the Mariana marginal basin. J Geophys Res 80:4043–4048

    Article  Google Scholar 

  4. Anderson RN (1980) Update of heat flow in the east and southeast Asian seas. In: Hayes DE (ed) The tectonic and geologic evolution of southeast Asian seas and islands, Geophysics Monograph, vol 23. American Geophysical Union, Washington, DC, pp 319–326

    Chapter  Google Scholar 

  5. Anderson RN, Uyeda S, Miyashiro A (1976) Geophysical and geochemical constraints at converging plate boundaries—Part I: Dehydration in the downgoing slab. Geophys J Int 44:333–357

    Article  Google Scholar 

  6. Anderson RN, Langseth MG, Hayes DE, Watanabe T, Yasui M (1978) Heat flow, thermal conductivity, thermal gradient. Geophysical atlas of the East and Southeast Asian seas. I.D.O.E.

    Google Scholar 

  7. Andrews DJ, Sleep NH (1974) Numerical modelling of tectonic flow behind island arcs. Geophys J Roy Astron Soc 38:237–251

    Article  Google Scholar 

  8. Baranov BV, Seliverstov NI, Murav’ev AV, Muzurov EL (1991) The Komandorsky Basin as a product of spreading behind a transform plate boundary. Tectonophysics 199(2–4):237–269

    Google Scholar 

  9. Bogatikov OA, Tsvetkov AA, Kovalenko VI (1987) Magmatic evolution of island arcs. In: Petrology and geochemistry of arcs and marginal seas. Moscow, Chap.6, pp 313–331 (in Russian)

    Google Scholar 

  10. Bogdanov NA (1988) Tectonics of the deep-sea basins of the marginal seas. Nedra, Moscow, 221 pp (in Russian)

    Google Scholar 

  11. Carslaw G, Jaeger D (1964) Thermal conductivity of solids. Nauka, Moscow, p 487. (in Russian)

    Google Scholar 

  12. Choi DK, Stagg HMJ, et al (1987) “Rig Seismic” research cruise 6: Northern Australia heat flow post cruise report. Australian Government Publication Service, 40 pp

    Google Scholar 

  13. Comas MC, Garcia-Dueñas V, Jurado MJ (1992) Neogene tectonic evolution of the Alboran basin from MCS data. Geo-Mar Lett 12:157–164

    Article  Google Scholar 

  14. Cooper AK, Marlow MS, Scholl DW (1976) Mesozoic magnetic lineations in the Bering Sea marginal basin. J Geophys Res 81:1916–1934

    Article  Google Scholar 

  15. Delany JM, Helgeson HC (1978) Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and > 800 °C. Am J Sci 278:638–686

    Article  Google Scholar 

  16. Donnelly TW et al (1973) Basalts and dolerites of Late Cretaceous agefrom the Central Caribbean. In: Edgar NT et al (eds) Initial reports of DSDP, Leg 15. US Government Print Office, Washington, DC, pp 989–1011

    Google Scholar 

  17. Eguchi T, Uyeda S, Maki T (1979) Seismotectonics and tectonic history of the Andaman Sea. Tectonophysics 57:7–51

    Article  Google Scholar 

  18. Foster TD (1962) Heat flow measurements in the Northwest Pacific and in the Bering Sea. J Geophys Res. 67:2991–2993

    Article  Google Scholar 

  19. Furlong KP, Chapman DS, Alfeld PW (1982) Thermal modeling of the geometry of subduction with implications for the tectonics of the overriding plate. J Geophys Res. 87(B3):1786–1802

    Article  Google Scholar 

  20. Furukawa Y, Uyeda S (1989) Thermal state under Tohoku arc with con-sideration of crustal heat generation. Tectonophysics 164:175–187

    Article  Google Scholar 

  21. Galushkin YI, Smirnov YB (1987) Thermal history of sedimentary basins. Express heat flow estimation methods. Geol Geophys 11:105–112. (in Russian)

    Google Scholar 

  22. Gerard R, Langseth MG, Ewing M (1962) Thermal gradient measurements in the water and bottom sediments of the Western Atlantic. J Geophys Res 67:785–803

    Article  Google Scholar 

  23. Gill JB (1981) Orogenic andesites and plate tectonics (ed Wyllie PJ). Springer, 390pp

    Google Scholar 

  24. Hasterok D (2016) Global heat flow database. www.heatflow.org/

  25. Hasebe K, Fujii N, Uyeda S (1970) Thermal processes under island arcs. Tectonophysics 10:335–355

    Article  Google Scholar 

  26. Hawkins JW, Lonsdale PF, Macdougall JD, Volpe AM (1990) Petrology of the axial ridge of the Mariana Trough backarc spreading center. Earth Planet Sci Lett 100:226–250

    Article  Google Scholar 

  27. Hayes DE (1984) The marginal seas of southeast Asia. In: History and origin of marginal and inland seas. 27th IGC Reports vol.6. Part II. Nauka, Moscow, pp 30–44. (in Russian)

    Google Scholar 

  28. Hilde TWC (1983) Sediment subduction versus accretion around the Pacific. Tectonophysics 99:381–397

    Article  Google Scholar 

  29. Hilde TWC, Uyeda S, Kroenke L (1977) Evolution of the western Pacific and its margin. Tectonophysics 38(1–2):145–165

    Article  Google Scholar 

  30. Hobart MA, Anderson RN, Fujii N, Uyeda S (1983) Heat flow from hydrothermal mounds in two million-year-old crust of the Mariana Trough which exceeds two watts per meter 2. EOS Trans Am Geophys Union 64:315

    Google Scholar 

  31. Honda S (1985) Thermal structure beneath Tohoku, northeast Japan – a case study for understanding the detailed thermal structure of the subduction zone. Tectonophysics 112:69–102

    Article  Google Scholar 

  32. Honza E, Davies HL, Keene JB, Tiffin DL (1987) Plate boundaries and evolution of the Solomon Sea region. Geo-Marine Lett 7:161–168

    Article  Google Scholar 

  33. Hsui AT, Toksoz MN (1981) Back-arc spreading: trench migration, continental pull or induced convection? Tectonophysics 74:89–98

    Article  Google Scholar 

  34. Hussong DM, Uyeda S (1982) Initial reports of deep sea drilling project, Leg 60. US Government Print Office, Washington, DC, 929 pp

    Google Scholar 

  35. Hutchison J, Von Herzen RP, Louden KE, Sclater JG, Jemsek J (1985) Heat flow in the Balearic and Tyrrenian basins Western Mediterranian. J Geophys Res 90(B1):685–701

    Article  Google Scholar 

  36. Ida Y (1983) Thermal and mechanical processes producing arc volcanism and back-arc spreading. In: Arc volcanism: Physics and tectonics. Tokyo, pp 165–175

    Google Scholar 

  37. Karig DE (1971) Structural history of the Mariana island arc system. Geol Soc Amer Bull 83:323–344

    Article  Google Scholar 

  38. Karig DE (1983) Temporal relationships between back arc basin formation and arc volcanism with special reference to the Philippine Sea. In: Hayes DE (ed) The tectonic and geologic evolution of Southeast Asian Seas and Islands, P.2, Geophysics Monograph 27. American Geophysical Union, Washington, DC, pp 318–325

    Chapter  Google Scholar 

  39. Khutorskoy MD (1982) Heat flow in areas of structural geological heterogeneity. In: Proceedings of GIN USSR, vol 353. Nauka, Moscow, p 77 (in Russian)

    Google Scholar 

  40. Kimura M, Uyeda S, Kato Y, Tanaka T, Yamano M, Gamo T, Sakai H, Kato S, Izawa E, Oomori T (1989) Active hydrothermal mounds in the Okinawa trough back-arc basin, Japan. Tectonophysics 145:319–324

    Article  Google Scholar 

  41. Kushiro I (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high pressures. Carnegie Inst Washington Yearbook 77:675–677

    Google Scholar 

  42. Langseth MG, Hobart MA, Horai K (1980) Heat flow in the Bering sea. J Geophys Res 85:3740–3750

    Article  Google Scholar 

  43. Langseth MG, Mrozowski CL (1980) Geophysical surveys for Leg 59. In: Initial reports of DSDP, 59. Washington, DC, pp 487–502

    Google Scholar 

  44. Lee CS, McCabe R (1986) The Banda-Celebes-Sulu basins: a trapped piece of Cretaceous-Eocene oceanic crust? Nature 322:51–54

    Article  Google Scholar 

  45. Lee CH, Shor GG, Bibee LD, Lu RS, Hilde TWC (1980) Okinava Trough: origin of a back-arc basin. Mar Geol 35:219–241

    Article  Google Scholar 

  46. Lister CRB (1972) On the thermal balance of the mid-ocean ridge. Geophys J Roy Astr Soc 26:515–535

    Article  Google Scholar 

  47. Lister CRB (1977) Estimates for heat flow and deep rock properties based on boundary layer theory. Tectonophysics 41:157–171

    Article  Google Scholar 

  48. Lobkovsky LI (1988) Geodynamics of the zones of spreading, subduction and two-tier plate tectonics. Nauka, Moscow, p 252. (in Russian)

    Google Scholar 

  49. Louden KE (1977) Paleomagnetism of DSDP sediments, phase shifting of magnetic anomalies, and rotations of the West Philippine Basin. J Geophys Res 82:2989–3002

    Article  Google Scholar 

  50. Lu RS, Pan JJ, Lee TC (1981) Heat flow in the southwestern Okinawa Trough. Earth Planet Sci Lett 55(2):299–331

    Article  Google Scholar 

  51. Matsubayashi O, Nagao T (1988) Compilaiton of heat flow onshore and offshore the Southeast Asia. Tectonics of Eastern Asia and Western Pacific continental margin, vol 22. DELP Publication, Tokyo, pp 125–126

    Google Scholar 

  52. McKenzie DP (1968) The influence of boundary conditions and rotation on convection in the Earth’s mantle. Geophys J R Astron Soc 15:457–500

    Article  Google Scholar 

  53. McKenzie DP (1969) Speculations on the consequences and causes of plate motions. Geophys J 18:1–32

    Article  Google Scholar 

  54. McKenzie DP, Sclater JG (1968) Heat flow inside the island arcs of the northwestern Pacific. J Geophys Res 73:3173–3179

    Article  Google Scholar 

  55. Melankholina EN (1988) Tectonics of the North-West Pacific. Relationship of the structures of the ocean and the continental margin. In: Proceedings of the Geological Institute, Academy of Sciences, vol. 434, p 218 (in Russian)

    Google Scholar 

  56. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  57. Mrozowski CL, Hayes DE (1979) The evolution of the Parece Vela Basin, eastern Philippine Sea. Earth Planet Sci Lett 46:49–67

    Article  Google Scholar 

  58. Mrozowski CL, Hayes DE, Taylor B (1982a) Multichannel seismic reflection surveys of Leg 60 sites, DSDP. Initial Rep DSDP 59:57–69

    Google Scholar 

  59. Mrozowski CL, Hayes DE, Taylor B (1982b) Complexities in the tectonic evolution of the West Philippine basin. Tectonophysics 82:1–24

    Article  Google Scholar 

  60. Murauchi S, Den N, Asano S, Hotta H, Yoshii T, Asanuma T, Hagiwara K, Ichikawa K, Sato T, Ludwig WT, Ewing JI, Edgar HT, Houtz RE (1968) Crustal structure of the Philippine sea. J Geophys Res 73:3143–3171

    Article  Google Scholar 

  61. Muraviev AV (1988) Heat flow in the southern part of Komandorskaya basin. In: Geothermal studies at seafloor. Nauka, Moscow, pp 59–68 (in Russian)

    Google Scholar 

  62. Muraviev AV, Smirnov YB, Sugrobov VM (1988) Heat flow along the Philippine Sea Geotraverse. Dokl Akad Nauk USSR 299:189–194. (in Russian)

    Google Scholar 

  63. Otsuki K (1989) Empirical relationships among the convergent rate of plates, rollback rate of trench axis and island arc tectonics: “Laws of convergent rate of plates”. Tectonophysics 159(1–2):73–94

    Article  Google Scholar 

  64. Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor Bathymetry and heat flow with age. J Geophys Res 82:803–827

    Article  Google Scholar 

  65. Peacock SM (1987) Thermal effects of metamorphic fluids in subduction zones. Geology 15:1057–1060

    Article  Google Scholar 

  66. Peacock SM (2013) Thermal and petrologic structure of subduction zones. Geophysics monograph series. Book Editor(s): Bebout GE, Scholl DW, Kirby SH, Platt JP

    Google Scholar 

  67. Polyak BG (1988) Heat and mass flow from the mantle in the main structures of the earth's crust. Nauka, Moscow, p 192. (in Russian)

    Google Scholar 

  68. Polyak BG, Fernàndez M, Khutorskoy MD et al (1996) Heat flow in the Alboran Sea, western Mediterranean. Tectonophysics 263:191–218

    Article  Google Scholar 

  69. Popova AK, Smirnov YB (1981) Tasman Sea and trenches of the South-Western Pacific. In: Methodical and experimental basics of geothermics, pp 178–181 (in Russian)

    Google Scholar 

  70. Pushcharovsky YM (1972) Introduction to the tectonics of the Pacific segment of the Earth. Nauka, Moscow, p 222. (in Russian)

    Google Scholar 

  71. Rodnikov AG, Isezaki N, Shiki T, Uyeda S, Liu G (eds) (1991) The North China Plain – Philippine Sea – Mariana Trench Geotraverse. Nauka, Moscow, p 152. (in Russian)

    Google Scholar 

  72. Rodnikov AG, Rodkin MV, Stroev PA, Uyeda S, Isezaki N, Shiki T (1996) Deep structure and geophysical fields along the Philippine Sea Geotraverse. Phys Solid Earth 32(12):1010–1017

    Google Scholar 

  73. Rubenstone JL (1984) Geology and geochemistry of early Tertiary submarine volcanic rocks of the Aleutian islands, and their bearing on the development of the Aleutian island arc. PhD Thesis, Cornell University, Ithaca, 350 pp

    Google Scholar 

  74. Sano Y, Wakita H (1985) Geographical distribution of 3He/4He ratios in Japan: implications for arc tectonics and incipient magmatism. J Geophys Res 90(B10):8729–8741

    Article  Google Scholar 

  75. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  76. Scholl DW, Buffington EC, Marlow MS (1975) Plate tectonics and structural evolution of the Aleutian-Bering Sea region. In: Forbes RB (ed) Contributions to the geology of the Bering sea basin and adjacent regions. Geological Society of the American Memoirs, vol 151, pp 1–32

    Google Scholar 

  77. Sclater JG, Ritter UG, Dixon FS (1972) Heat flow in the Southwestern Pacific. J Geophys Res 77(29):5697–5704

    Article  Google Scholar 

  78. Sclater JG, Karig DE, Lawver LA, Louden K (1976) Heat flow, depth, and crustal thickness of the marginal basins of the south Philippine Sea. J Geophys Res 81:309–318

    Article  Google Scholar 

  79. Scott R, Kroenke L (1980) Evolution of back arc spreading and arc volcanism in the Philippine Sea: interpretation of Leg 59 DSDP results. In: Hayes DE (ed) The tectonic and geologic evolution of southeast Asian seas and islands. Geophysics Monograph 23. AGU, Washington, DC, pp 283–291

    Chapter  Google Scholar 

  80. Seliverstov NI, Avdeiko GP, Ivanenko AN, Shkira VA, Khubunaya SA (1986) New submarine volcano in the western part of Aleutian island arc. Volcanol Seismol 4:3–17

    Google Scholar 

  81. Sharaskin AY, Karpenko SF (1987) Subduction in the light of geochemical data. In: The structure of seismic focal zones. Nauka, Moscow, pp 110–122 (in Russian)

    Google Scholar 

  82. Shemenda AI (1985) Modeling the spreading mechanism of some types of marginal seas. Oceanology 25(2):265–273. (in Russian)

    Google Scholar 

  83. Shih T (1980) Marine magnetic anomalies from the Western Philippine Sea: implications for the evolution of marginal basins. In: The tectonic and geologic evolution of Southeast Asian seas and islands, Geophysics monograph, 23. AGU, Washington, DC, pp 49–85

    Google Scholar 

  84. Shiono K, Sacks IS, Linde AT (1980) Preliminary velocity structure of Japanese Islands and Philippine Sea from surface wave dispersion. Yearbook Carnegie Inst Washington 79:498–505

    Google Scholar 

  85. Singh SC, Moeremans R (2017) Anatomy of the Andaman–Nicobar subduction system from seismic reflection data. Chapter 13. Geological Society, London, Memoirs 47:193–204. https://doi.org/10.1144/M47.13

  86. Smirnov YB, Sugrobov VM (1979) Earth heat flow in the Kuril-Kamchatka and Aleutian provinces. I. Heat flow and tectonics. Vulkanol Seismol 1:59–73 (in Russian)

    Google Scholar 

  87. Smirnov YB, Sugrobov VM, Galushkin YI (1982) Heat flow in the junction zone of the Aleutian-Kamchatka island arc system. Volcanol Seismol 6:96–115

    Google Scholar 

  88. Smirnov YB, Yamano M, Uyeda S, Galushkin YI, Muraviev AV, Sugrobov VM, Ruhui Z, Qianfan W, Li R, Wanxia Z (1991) Heat flow. In: Rodnikov AG, Isezaki N et al (eds) The North China Plain – Philippine Sea-Mariana Trench Geotraverse. Moscow, Nauka, pp 97–119

    Google Scholar 

  89. Stein CS, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–129

    Article  Google Scholar 

  90. Stein CS, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99(B2):3081–3096

    Article  Google Scholar 

  91. Soinov VV, Solovyev VN, Vlasenko VN, Salman AG (1984) Heat flows through the bottom of the Deryugin Sea of Okhotsk Sea. In: Theoretical and experimental studies on the geothermics of seas and oceans. Nauka, Moscow, pp 63–66. (in Russian)

    Google Scholar 

  92. Staudacher T, Allegre CJ (1988) Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sci Lett 89:173–183

    Article  Google Scholar 

  93. Sugrobov VM, Gorshkov AP, Smirnov YB (1983) The New Guinea Sea. In: Methodical and experimental fundamentals of geothermy. Nauka, Moscow, pp 173–178. (in Russian)

    Google Scholar 

  94. Sydora LJ, Jones FW, Lambert RSJ (1980) Model calculations of the thermal fields of subducting lithospheric slabs and partial melting. Tectonophysics 62:233–249

    Article  Google Scholar 

  95. Tamaki K (1985) Two models of back-arc spreading. Geology (7):475–478

    Google Scholar 

  96. Tamaki K (1986) Age estimation of the Japan Sea on the basis of stratigraphy, basement depth and heat flow data. J Geomag Geoelect 38:427–444

    Article  Google Scholar 

  97. Tamaki K, Pisciotto K, Allan J et al (1990) Background, objectives, and principal results, ODP LEG 127, Japan Sea. Proceedings of the Ocean Drilling Program. Initial Rep 127:5–33

    Google Scholar 

  98. Tanaka A, Yamano M, Yano Y, Sasada M (2004) Geothermal gradient and heat flow data in and around Japan (I): appraisal of heat flow from geothermal gradient data. Earth Planets Space 56:1191–1194

    Article  Google Scholar 

  99. Taylor B (1979) Bismarck Sea: evolution of a back-arc basin. Geology 7:171–174

    Article  Google Scholar 

  100. Taylor B, Hayes DE (1983) Origin and history of the South China Sea Basin. In: Hayes DE (ed) The tectonic and geologic evolution of Southeast Asian Seas and Islands, Geophysics monograph 23. American Geophysical Union, Washington, DC, pp 89–104

    Google Scholar 

  101. Turcotte DL, Schubert G (1973) Frictional heating of the descending lithosphere. J Geophys Res 70:5876–5886

    Article  Google Scholar 

  102. Turcotte DL, Schubert G (1982) Geodynamics – application of continuum physics to geological problems. Wiley, New York, 450 pp

    Google Scholar 

  103. Uyeda S (1977) Some basic problems in the trench-arc-back arc systems. American Geophysical Union. Maurice Ewing Ser 1:1–14

    Article  Google Scholar 

  104. Uyeda S (1982) Subduction zones: an introduction to comparative subductology. Tectonophysics 81(3–4):133–159

    Article  Google Scholar 

  105. Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061

    Article  Google Scholar 

  106. Uyeda S, Vacquer V (1968) Geothermal and geomagnetic data in and around the island arc of Japan. Geophys Monogr AGU 12:349–366

    Google Scholar 

  107. Van den Beukel J, Wortel R (1988) Thermo-mechanical modelling of arc-trench regions. Tectonophysics 154:177–193

    Article  Google Scholar 

  108. Van Keken PE, Kita S, Nakajima J (2012) Thermal structure and intermediate-depth seismicity in the Tohoku-Hokkaido subduction zones. Solid Earth 3(2):355–364

    Article  Google Scholar 

  109. Van Keken P, Wilson C (2017) Thermal structure of subduction zones/Carnegie Inst. For Science, Washington, DC

    Google Scholar 

  110. Velinsky VV, Tretyakov GA, Simonov VA (2004) Physicochemical modeling of the serpentinization process and the role of oceanic serpentinites in hydrothermal ore formation. Izv Tomsk Polytech Univer. 307(1):57–63. (in Russian)

    Google Scholar 

  111. Veselov OV (2005) Geothermics of tectonosphere of the Japan Sea – Sea of Okhotsk region. PhD Thesis, Khabarovsk, 2005, p 28

    Google Scholar 

  112. Veselov OV, Volkova NA, Soinov VV (1983) Transition zones of the Okhotsk, Japanese and Philippine provinces. In: Methodical and experimental fundamentals of geothermy. Nauka, Moscow, pp 168–171. (in Russian)

    Google Scholar 

  113. Veselov OV, Semakin VP, Kochergin AV (2018) Heat flow and neotectonics of the area of the Deryugin basin (Sea of Okhotsk). Transit Zone Geosyst 2(4):312–322. (in Russian)

    Article  Google Scholar 

  114. Verhoogen J (1965) Phase changes and convection in the Earth’s Mantle. Phil Trans Roy Soc A 258:276–283

    Google Scholar 

  115. Watanabe N, Langseth MG, Anderson RN (1977) Heat flow in back-arc basins of the western Pacific. In: Talwani M, Pitman WC (eds) Island arcs, deep sea trenches and back-arc basins. American Geophysical Union, pp 137–161

    Google Scholar 

  116. Weissel JK, Hayes DE (1977) Evoluiton of the Tasman Sea reappraised. Earth Planet Sci. Lett. 36:77–84

    Article  Google Scholar 

  117. Weissel JK, Watts AB (1979) Tectonic evolution of the Coral Sea basin. J Geophys Res 84:4572–4582

    Article  Google Scholar 

  118. Wyllie PJ (1977) Magmas and volatile components. Am. Mineral. 64:469–500

    Google Scholar 

  119. Yamano M, Uyeda, Aoki Y, Shipley TH (1982) Estimates of heat flow derived from gas hydrates. Geology 10:339–343

    Google Scholar 

  120. Yamano M, Honda S, Uyeda S (1984) Nankai Trough: a hot trench? Mar Geophys Res 6:187–203

    Article  Google Scholar 

  121. Yamano M, Uyeda S, Kinoshita H, Hilde TWC (1986) Heat flow measurements. Report on DELP-1984 cruise in the middle Okinawa trough. Bull ERI, Tokyo 61:251–267

    Google Scholar 

  122. Yamano M, Uyeda S (1988) Heat flow. In: Nairn AEM, Stehli FG, Uyeda S (eds) The ocean basins and margins, vol. 7B. Plenum Publishing Corporation, pp 523–557

    Google Scholar 

  123. Yamano M, Shevaldin YuV, Zimin PS, Balabashin VI (1996) Heat flow of the Japan Sea. In: Geology and geophysics of the Japan Sea. Sеr. Japan-Russian monograph (JRM) Tokyo. Terra Scientific PC, pp 61–74

    Google Scholar 

  124. Yoshii T, Yamano M (1983) Digital heat flow data file around Japanese Islands. Tokyo

    Google Scholar 

  125. Zellmer GF, Edmonds M, Straub SM (2014) Volatiles in subduction zone magmatism. Geol Soc Lond Spec Publ 410:1–17

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the colleagues – Prof. M.D. Khutorskoy and Dr. B.G. Polyak for useful discussions and valuable comments. The work does not contain any conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muravyev, A. (2021). On Geothermal Problems of the Marginal Seas. In: Svalova, V. (eds) Heat-Mass Transfer and Geodynamics of the Lithosphere. Innovation and Discovery in Russian Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-63571-8_9

Download citation

Publish with us

Policies and ethics