Skip to main content

Examining the Thermal Properties of Full-Scale Test Modules on the Overall Thermal Performance of Buildings

  • Conference paper
  • First Online:
Resilient and Responsible Smart Cities

Abstract

R-value, thermal mass and other thermal properties have a direct effect on the thermal performance of buildings. This paper examines the thermal properties of full-scale test modules to show that the main parameters influencing the thermal performance of buildings in order to improve overall thermal performance and reduce the level of heating and cooling are required to maintain the thermal contentment of occupants. The main evaluation tool used in Australia, AccuRate, was used to evaluate vetted thermal building properties to enhance energy efficiency scores by finding suitable thermal structures to upgrade the efficiency of houses and reduce energy consumption. For the real house test modules located in Newcastle (Australia), it was discovered that the insulation of the walls (higher R-value) increased overall thermal performance, whilst the floor insulation increased the thermal performance of the modules by reducing the thermal mass of the floor and trapping the summer heat inside the module, while the R-value is not the only thermal performance forecasting device. For internal brick walls with a darker colour, the thermal mass of the interior walls is significantly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Addous, M., & Albatayneh, A. (2019). Knowledge gap with the existing building energy assessment systems. Energy Exploration & Exploitation. http://doi.org/10.1177/0144598719888100.

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2015). The significance of time step size in simulating the thermal performance of buildings. Advances in Research, 1–12.

    Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A. W., & Moghtaderi, B. (2016a). warming issues associated with the long term simulation of housing using CFD analysis. Journal of Green Building, 11(2), 57–74.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2016b). Assessment of the thermal performance of complete buildings using adaptive thermal comfort. Procedia-Social and Behavioral Sciences, 216, 655–661.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2017a). The significance of temperature based approach over the energy based approaches in the buildings thermal assessment. Environmental and Climate Technologies, 19(1), 39–50.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2017b). Thermal assessment of buildings based on occupantsbehavior and the adaptive thermal comfort approach. Energy Procedia, 115, 265–271.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2017c). Discrepancies in peak temperature times using prolonged CFD simulations of housing thermal performance. Energy Procedia, 115, 253–264.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2017d). Temperature versus energy based approaches in the thermal assessment of buildings. Energy Procedia, 128, 46–50.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018a). The significance of building design for the climate. Environmental and Climate Technologies, 22(1), 165–178.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018b). The impact of the thermal comfort models on the prediction of building energy consumption. Sustainability, 10(10), 3609.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., & Page, A. (2018c, January). Adaptation the use of CFD modelling for building thermal simulation. In Proceedings of the 2018 International Conference on Software Engineering and Information Management (pp. 68–72).

    Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018d). Renewable energy systems to enhance buildings thermal performance and decrease construction costs. Energy Procedia, 152, 312–317.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018e). An alternative approach to the simulation of wind effects on the thermal performance of buildings. International Journal of Computational Physics Series, 1(1), 35–44.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018f). The significance of the orientation on the overall buildings thermal performance-case study in Australia. Energy Procedia, 152, 372–377.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2019a). The significance of the adaptive thermal comfort limits on the air-conditioning loads in a temperate climate. Sustainability, 11(2), 328.

    Article  Google Scholar 

  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2019b). Development of a new metric to characterise the buildings thermal performance in a temperate climate. Energy for Sustainable Development, 51, 1–12.

    Article  Google Scholar 

  • Alterman, D., Moffiet, T., Hands, S., Page, A., Luo, C., & Moghtaderi, B. (2012). A concept for a potential metric to characterise the dynamic thermal performance of walls. Energy and Buildings, 54, 52–60.

    Article  Google Scholar 

  • Aurlien, T. (2013). Performing intermediate checks and early-stage testing of airtightness. Building and Ductwork Airtightness Selected Papers from the Rehva Special Journal Issue on ‘Airtightness’, 15.

    Google Scholar 

  • Fugate, J. R. (2018). A passive solar retrofit in a gloomy climate.

    Google Scholar 

  • Leftheriotis, G., & Yianoulis, P. (2000). Thermal properties of building materials evaluated by a dynamic simulation of a test cell. Solar Energy, 69(4), 295–304.

    Article  Google Scholar 

  • Macedo, I. C., Seabra, J. E., & Silva, J. E. (2008). Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 32(7), 582–595.

    Article  Google Scholar 

  • Orme, M. (2001). Estimates of the energy impact of ventilation and associated financial expenditures. Energy and Buildings, 33(3), 199–205.

    Article  Google Scholar 

  • Page, A., Moghtaderi, B., Alterman, D., & Hands, S. (2011). A study of the thermal performance of Australian housing.

    Google Scholar 

  • Palyvos, J. A. (2008). A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Applied Thermal Engineering, 28(8–9), 801–808.

    Article  Google Scholar 

  • Ramakrishnan, S., Wang, X., Sanjayan, J., & Wilson, J. (2017). Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Applied Energy, 194, 410–421.

    Article  Google Scholar 

  • Reardon, C., Milne, G., McGee, C., & Downton, P. (2010). Your home technical manual. Australian Government Department of Climate Change and Energy Efficiency.

    Google Scholar 

  • Roodman, D. M., Lenssen, N. K., & Peterson, J. A. (1995). A building revolution: How ecology and health concerns are transforming construction (p. 11). Washington, DC: Worldwatch Institute.

    Google Scholar 

  • Sala, J. M., Urresti, A., Martín, K., Flores, I., & Apaolaza, A. (2008). Static and dynamic thermal characterisation of a hollow brick wall: Tests and numerical analysis. Energy and Buildings, 40(8), 1513–1520.

    Article  Google Scholar 

  • Sutcu, M., del Coz Díaz, J. J., Rabanal, F. P. Á., Gencel, O., & Akkurt, S. (2014). Thermal performance optimization of hollow clay bricks made up of paper waste. Energy and Buildings, 75, 96–108.

    Article  Google Scholar 

  • Thomsen, K. E., Rose, J., & Aggerholm, S. (2010). The final recommendations of the ASIEPI project: How to make EPB-regulations more effective? Hvordan EPB-reglernegøres mere effektive.

    Google Scholar 

  • Walker, R., & Pavía, S. (2015). Thermal performance of a selection of insulation materials suitable for historic buildings. Building and Environment, 94, 155–165.

    Article  Google Scholar 

  • Wolff, M. S., Teitelbaum, S. L., McGovern, K., Pinney, S. M., Windham, G. C., Galvez, M., … Biro, F. M. (2015). Environmental phenols and pubertal development in girls. Environment international, 84, 174–180.

    Google Scholar 

  • Zhu, L., Hurt, R., Correia, D., & Boehm, R. (2009). Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house. Energy and Buildings, 41(3), 303–310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiman Albatayneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albatayneh, A., Alterman, D., Page, A., Moghtaderi, B. (2021). Examining the Thermal Properties of Full-Scale Test Modules on the Overall Thermal Performance of Buildings. In: Ujang, N., Fukuda, T., Pisello, A.L., Vukadinović, D. (eds) Resilient and Responsible Smart Cities. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-63567-1_15

Download citation

Publish with us

Policies and ethics