Skip to main content

The Revolutionary Potential of the Hidden Half of Nature in Agriculture and Medicine

  • Chapter
  • First Online:
Microbes: The Foundation Stone of the Biosphere

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 8))

  • 890 Accesses

Abstract

Recent advances in microbial community ecology have reframed our view of the microbial world. In particular, advances in understanding the importance of horizontal gene transfer and symbiotic relationships with host organisms carry practical relevance for agriculture and medicine. In both areas, growing recognition of the potential to cultivate beneficial microbial communities presents opportunities to revolutionize conventional practices. Regenerative farming systems based on soil-health building principles can greatly reduce major impacts of agriculture’s environmental footprint. And dietary practices that promote nutrient-dense foods and cultivate beneficial gut microbiomes can help address the distinctly modern chronic diseases that increasingly afflict humanity. Acknowledging the duality of the microbial world and adopting practices to promote development of beneficial communities and limit opportunities for pathogens could transform these two areas that remain central to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–32

    Article  CAS  Google Scholar 

  • Anderson C, Beare M, Buckley HL, Lear G (2017) Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils. PeerJ 5:e3930

    Article  Google Scholar 

  • Antunes PM et al (2012) Linking soil biodiversity and human health: do arbuscular mycorrhizal fungi contribute to food nutrition? In: Wall DH et al (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 153–172

    Chapter  Google Scholar 

  • Bais HP et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Balfour EB (1943) The living soil: evidence of the importance to human health of soil vitality, with special reference to National Planning. Faber and Faber, London

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bowles TM, Jackson LE, Loeher M, Cavagnaro TR (2016) Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crops effects. J Appl Ecol 54:1785–1793

    Article  Google Scholar 

  • Corkidi L, Rowland DL, Johnson NC, Allen EB (2002) Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil 240:299–310

    Article  CAS  Google Scholar 

  • D’Incalci M, Steward WP, Gescher AJ (2005) Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol 6:899–904

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Haddaway NR et al (2017) How does tillage intensity affect soil organic carbon? A systematic review. Environ Evid 6:30

    Article  Google Scholar 

  • Howard A (1940) An agricultural testament. Oxford University Press, Oxford

    Google Scholar 

  • Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. In: Frossard E, Blum WEH, Warkentin BP (eds) Function of soils for human societies and the environment, Special Publication 266. Geological Society, London, pp 89–115

    Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  Google Scholar 

  • Kassam A, Friedrich T, Derpsch R (2019) Global spread of conservation agriculture. Int J Environ Stud 76:29–51

    Article  CAS  Google Scholar 

  • LaCanne C, Lundgren J (2018) Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6:e4428

    Article  Google Scholar 

  • Lambert DH, Baker DE, Cole HJ (1979) The role of mycorrhizae in the interactions of P with Zn, Cu and other elements. Soil Sci Soc Am J 43:976–908

    Article  CAS  Google Scholar 

  • Lehmann A, Versoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants – a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105

    Article  CAS  Google Scholar 

  • Montgomery DR (2007) Dirt: the erosion of civilizations. University of California Press, Berkeley

    Book  Google Scholar 

  • Montgomery DR (2017) Growing a revolution: bringing our soil back to life. W.W. Norton & Co., New York

    Google Scholar 

  • Montgomery DR, Biklé A (2016) The hidden half of nature: the microbial roots of life and health. W.W. Norton & Co., New York

    Google Scholar 

  • Murthy NS, Mukherjee S, Ray G, Ray A (2009) Dietary factors and cancer chemoprevention: an overview of obesity-related malignancies. J Postgrad Med 55:45–54

    Article  CAS  Google Scholar 

  • Nielands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26,723–26,726

    Article  Google Scholar 

  • Nunes MR et al (2018) No-till and cropping system diversification improve soil health and crop yield. Geoderma 328:30–43

    Article  CAS  Google Scholar 

  • Oliveira Ferreira A et al (2016) Can no-till grain production restore soil organic carbon to levels natural grass in a subtropical oxisol? Agric Ecosyst Environ 229:13–20

    Article  Google Scholar 

  • Oliver MA, Gregory PJ (2015) Soil, food security and human health: a review. Eur J Soil Sci 66:257–276

    Article  Google Scholar 

  • Pepper IL et al (2009) Soil: a public health threat or savior? Crit Rev Environ Sci Technol 39:416–432

    Article  Google Scholar 

  • Powlson DS et al (2014) Limited potential of no-till agriculture for climate change mitigation. Nat Clim Chang 4:678–683

    Article  Google Scholar 

  • Rao AV, Agarwal S (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review. Nutr Res 19:305–323

    Article  CAS  Google Scholar 

  • Reeve JR et al (2016) Organic farming, soil health, and food quality: considering possible links. Adv Agron 137:319–366

    Article  Google Scholar 

  • Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59

    Article  Google Scholar 

  • Schreiner M (2005) Vegetable crop management strategies to increase the quantity of phytochemicals. Eur J Nutr 44:85–94

    Article  CAS  Google Scholar 

  • Smith SE, Jokobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  Google Scholar 

  • Tautges NE et al (2019) Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Glob Chang Biol 25:3753–3766

    Article  Google Scholar 

  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785

    Article  CAS  Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  Google Scholar 

  • Waksman S, Starkey R (1931) The soil and the microbe. Wiley, New York

    Book  Google Scholar 

  • Wardle DA (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv Ecol Res 26:105–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Montgomery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montgomery, D.R. (2021). The Revolutionary Potential of the Hidden Half of Nature in Agriculture and Medicine. In: Hurst, C.J. (eds) Microbes: The Foundation Stone of the Biosphere. Advances in Environmental Microbiology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-63512-1_12

Download citation

Publish with us

Policies and ethics