Skip to main content

Building a Navigation System for a Shopping Assistant Robot from Off-the-Shelf Components

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2020)

Abstract

A primary goal of developing robots is to relieve people from hard work or help them in difficult situations. An example for such a situation is a shopping assistant robot that supports people who need help in their daily life. Such a mobile robot has to be able to deal with dynamic environments (moving people) and navigate safely and efficiently. In the present paper, we provide a system description of our navigation strategy for an assistant robot that is developed for autonomous operation in a supermarket. Creating an appropriate experimental environment can be quite challenging, and access to the application place can be limited (e.g., a real supermarket). Therefore we complement our real robot with a digital twin and describe our approach to create a suitable simulation of a real-world supermarket. Further, we discuss how off-the-shelf software can be used to implement a three-stage navigation strategy (planing a route with a TSP solver, global path planning, and incorporating dynamic obstacles in an optimization-based TEB approach) that is suitable for environments with dynamic obstacles. The paper presents our approaches to create a 3D map from 2D floor plans, as well as the preprocessing of the sensor data for usage in the TEB planner. Finally, we provide our hands-on experience with implementing a complex state-machine using the graphical RAFCON framework.

Supported by the Federal Ministry of Education and Research, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Videos and other supplementary material can be found on our website https://www.tu-chemnitz.de/etit/proaut/shopping-robot.

  2. 2.

    Version 3.5; latest version (CoppeliaSim) does not work with the used V-Rep plug-in.

  3. 3.

    Brian P. Gerkey, AMCL, ROS Wiki, http://wiki.ros.org/amcl.

  4. 4.

    Tom Moore, robot_localization, ROS Wiki, http://wiki.ros.org/robot_localization.

  5. 5.

    Applegate, D. et al., “Concorde tsp solver”. http://math.uwaterloo.ca/tsp/concorde.

  6. 6.

    Richard Bormann, ipa_building_navigation, http://wiki.ros.org/ipa_building_navigation.

  7. 7.

    Statistic from our cooperation partner of the supermarket.

  8. 8.

    Michael Ferguson, navigation, ROS Wiki, http://wiki.ros.org/navigation.

  9. 9.

    Christoph Roesmann, teb_local_planner, http://wiki.ros.org/teb_local_planner.

References

  1. Bohren, J., Cousins, S.: The SMACH high-level executive [ROS News]. IEEE Robot. Autom. Mag. 17(4), 18–20 (2010)

    Article  Google Scholar 

  2. Brunner, S.G., et al.: RAFCON: a graphical tool for engineering complex, robotic tasks. In: IEEE International Conference on Intelligent Robots and Systems (2016)

    Google Scholar 

  3. Burgard, W., et al.: Experiences with an interactive museum tour-guide robot. Artif. Intell. 114, 3–55 (1999)

    Article  Google Scholar 

  4. Cheng, C.H., et al.: Design and implementation of prototype service robot for shopping in a supermarket. In: ARIS (2018)

    Google Scholar 

  5. Domschke, W., Drexl, A., Klein, R., Scholl, A.: Einführung in Operations Research, 9th edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48216-2

    Book  MATH  Google Scholar 

  6. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  7. Fox, D., et al.: Monte carlo localization: efficient position estimation for mobile robots. In: National Conference on Artificial Intelligence (1999)

    Google Scholar 

  8. Grunnet-Jepsen, A., et al.: Using the Intel \(\textregistered \) RealSense TM Depth cameras D4xx in Multi-Camera Configurations. Technical report (2018)

    Google Scholar 

  9. Hawes, N., et al.: The STRANDS project: long-term autonomy in everyday environments. IEEE Robot. Autom. Mag. 24(3), 146–156 (2017)

    Article  MathSciNet  Google Scholar 

  10. Kröse, B.J.A., Porta, J.M., van Breemen, A.J.N., Crucq, K., Nuttin, M., Demeester, E.: Lino, the user-interface robot. In: Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.) EUSAI 2003. LNCS, vol. 2875, pp. 264–274. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39863-9_20

    Chapter  Google Scholar 

  11. Lange, S., et al.: Two autonomous robots for the DLR spacebot cup -lessons learned from 60 minutes on the moon. In: International Symposium on Robotics, ISR (2016)

    Google Scholar 

  12. Leigh, A., et al.: Person tracking and following with 2D laser scanners. In: Proceedings of IEEE International Conference on Robotics and Automation (2015)

    Google Scholar 

  13. Lorenz, O., Thomas, U.: Real time eye gaze tracking system using CNN-based facial features for human attention measurement. In: VISIGRAPP (2019)

    Google Scholar 

  14. Nilsson, N.J.: Shakey the Robot. SRI INTERNATIONAL MENLO PARK CA (1984). https://www.sri.com/work/publications/shakey-robot

  15. Pitonakova, L., Giuliani, M., Pipe, A., Winfield, A.: Feature and performance comparison of the V-REP, Gazebo and ARGoS robot simulators. In: Giuliani, M., Assaf, T., Giannaccini, M.E. (eds.) TAROS 2018. LNCS (LNAI), vol. 10965, pp. 357–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96728-8_30

    Chapter  Google Scholar 

  16. Poschmann, J., et al.: Synthesized semantic views for mobile robot localization. In: European Conference on Mobile Robots, ECMR (2017)

    Google Scholar 

  17. Rohmer, E., et al.: CoppeliaSim (formerly v-REP): a versatile and scalable robot simulation framework. In: International Conference on Intelligent Robots and Systems (IROS) (2013)

    Google Scholar 

  18. Rösmann, C., et al.: Trajectory modification considering dynamic constraints of autonomous robots. In: Robotik 2012, pp. 74–79 (2012)

    Google Scholar 

  19. Rösmann, C., et al.: Efficient trajectory optimization using a sparse model. In: 2013 European Conference on Mobile Robots, pp. 138–143 (2013)

    Google Scholar 

  20. Schubert, S., Neubert, P., Protzel, P.: How to build and customize a high-resolution 3D laserscanner using off-the-shelf components. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 314–326. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40379-3_33

    Chapter  Google Scholar 

  21. Triebel, R., et al.: SPENCER: a socially aware service robot for passenger guidance and help in busy airports. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Field and Service Robotics. STAR, vol. 113, pp. 607–622. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27702-8_40

    Chapter  Google Scholar 

  22. Weissig, P., Protzel, P.: Properties of timebased local OctoMaps. In: Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots held in conjunction with IROS (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny Schlegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlegel, K., Neubert, P., Protzel, P. (2020). Building a Navigation System for a Shopping Assistant Robot from Off-the-Shelf Components. In: Mohammad, A., Dong, X., Russo, M. (eds) Towards Autonomous Robotic Systems. TAROS 2020. Lecture Notes in Computer Science(), vol 12228. Springer, Cham. https://doi.org/10.1007/978-3-030-63486-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63486-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63485-8

  • Online ISBN: 978-3-030-63486-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics