Skip to main content

Short-Chain Fatty Acids as Therapeutic Agents in Colon Malignancies

  • Chapter
  • First Online:
Colon Cancer Diagnosis and Therapy

Abstract

Colon cancer has taken a large number of lives worldwide and stands among the few topmost killer malignancies. Although several approaches to combat the detrimental effects of neoplastic cells have been implemented in preclinical and clinical settings, these transformed cells display aggressive and recalcitrant behaviour during progression as well as treatment. Natural metabolites of microbial origin have recently attracted the biomedical investigators to owing to vast diversity and bioactivity. Short-chain fatty acids (SCFA) are products of fermentative metabolism of the microbiota of the gut. They contain fewer than six carbons and include butyrate, propionate, acetate, and lactate. SCFA are known for their ability to hinder the process of oncogenesis at the earliest and can serve as therapeutic agents. Apart from their metabolite nature, SCFA butyrate and propionate can stimulate cell surface receptors and alter the phenotypic behaviour of affected cells. Dedicated but ambiguous transporters for these SCFAs are known, and their cellular presence has a distinct consequence on metabolic modulation of normal as well as transformed cells. Further, SCFA can modulate the key enzymes governing the epigenetic state of cells. Targeted members of epigenetic machinery include, but not limited to, HDACs and HAT. SCFA has shown potential in the management of cancers of various etiological origins. Moreover, SCFA can potentiate the ability of standard anticancer drugs through modulation of chemo-resistant conduct of transformed cells. This book chapter discusses the potential of SCFAs in colon cancer treatment with their possible mechanisms. Understanding the impending role of SCFA as therapeutic moieties will assist in designing therapeutic strategies using SCFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukaemia

AT:

Acetate

BT:

Butyrate

CDK:

Cyclin-dependent kinase

CKIs:

Cyclin-dependent kinase inhibitors

CRC:

Colorectal cancer

DCA:

Dichloroacetate

DF:

Dietary fibres

EMP:

Embden-Meyerhof-Parnas pathway

FFAR:

Free fatty acid receptor

GI tract:

Gastrointestinal tract

GPCR/GPR:

G protein-coupled receptor

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HDACi:

HDAC inhibitors

IL:

Interleukin

IMC:

Intramucosal carcinoma

LPS:

Lipopolysaccharide

MAPK or MAP kinase:

Mitogen-activated protein kinase

MCA:

Multiple colorectal adenomas

MCP-1:

Monocyte chemoattractant protein-1

NaBT:

Sodium butyrate

NF-kβ:

Nuclear factor-kappa β

NOS:

Nitric oxide synthase

PDK-2:

Pyruvate dehydrogenase kinase isoform 2

PEP:

Phosphoenolpyruvate

PGC:

Peroxisome proliferator-activated receptor-gamma coactivator

PKS:

Polyketide synthase

PPARs:

Peroxisome proliferator-activated receptors

PT:

Propionate

RS:

Resistant starch

SCFAs:

Short-chain fatty acids

TNFα:

Tumour necrosis factor α

TSGs:

Tumour suppressor genes

References

  1. Aschenbach JR, Bilk S, Tadesse G, Stumpff F, Gäbel G. Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1098–G107.

    Article  CAS  PubMed  Google Scholar 

  2. Bai Z, Zhang Z, Ye Y, Wang S. Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway. Cell Biol Int. 2010;34:1141–5.

    Article  CAS  PubMed  Google Scholar 

  3. Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Calderon PB, Feron O, Muccioli GG, Sonveaux P, Cani PD, Delzenne NM. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer. 2012;107:1337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blouin J-M, Penot G, Collinet M, Nacfer M, Forest C, Laurent-Puig P, Coumoul X, Barouki R, Benelli C, Bortoli S. Butyrate elicits a metabolic switch in human colon cancer cells by targeting the pyruvate dehydrogenase complex. Int J Cancer. 2011;128:2591–601.

    Article  CAS  PubMed  Google Scholar 

  5. Boillot J, Alamowitch C, Berger A, Luo J, Bruzzo F, Bornet F, Slama G. Effects of dietary propionate on hepatic glucose production, whole-body glucose utilization, carbohydrate and lipid metabolism in normal rats. Br J Nutr. 1995;73:241–51.

    Article  CAS  PubMed  Google Scholar 

  6. Borthakur A, Priyamvada S, Kumar A, Natarajan AA, Gill RK, Alrefai WA, Dudeja PK. A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  8. Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res. 2017;61(1):10.1002/mnfr.201500902.

    Google Scholar 

  9. Bush RS, Milligan LP. Study of the mechanism of inhibition of Ketogenesis by propionate in bovine liver. Can J Anim Sci. 1971;51:121–7.

    Article  CAS  Google Scholar 

  10. Carmona FJ, Esteller M. Epigenomics of human colon cancer. Mutat Res. 2010;693:53–60.

    Article  CAS  PubMed  Google Scholar 

  11. Chen G, Ran X, Li B, Li Y, He D, Huang B, Fu S, Liu J, Wang W. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine. 2018;30:317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cremonesi E, Governa V, Garzon JFG, Mele V, Amicarella F, Muraro MG, Trella E, Galati-Fournier V, Oertli D, Däster SR, Droeser RA, Weixler B, Bolli M, Rosso R, Nitsche U, Khanna N, Egli A, Keck S, Slotta-Huspenina J, Terracciano LM, Zajac P, Spagnoli GC, Eppenberger-Castori S, Janssen K-P, Borsig L, Iezzi G. Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut. 2018;67:1984–94.

    Article  CAS  PubMed  Google Scholar 

  13. Cresci GA, Thangaraju M, Mellinger JD, Liu K, Ganapathy V. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J Gastrointest Surg. 2010;14:449–61.

    Article  PubMed  Google Scholar 

  14. Decrion-Barthod A-Z, Bosset M, Plissonnier M-L, Marchini A, Nicolier M, Launay S, Prétet J-L, Rommelaere J, Mougin C. Sodium butyrate with UCN-01 has marked antitumour activity against cervical cancer cells. Anticancer Res. 2010;30:4049–61.

    CAS  PubMed  Google Scholar 

  15. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.

    Article  CAS  Google Scholar 

  16. Eberle JA, Widmayer P, Breer H. Receptors for short-chain fatty acids in brush cells at the “gastric groove”. Front Physiol. 2014;5

    Google Scholar 

  17. Encarnação JC, Pires AS, Amaral RA, Gonçalves TJ, Laranjo M, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Abrantes AM, Botelho MF. Butyrate, a dietary fiber derivative that improves irinotecan effect in colon cancer cells. J Nutr Biochem. 2018;56:183–92.

    Article  PubMed  CAS  Google Scholar 

  18. Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem. 2013;61:9517–33.

    Article  CAS  PubMed  Google Scholar 

  19. Feng W, Ao H, Peng C. Gut microbiota, short-chain fatty acids, and herbal medicines. Front Pharmacol. 2018;9:1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13–22.

    Google Scholar 

  21. Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr. 2006;95:916–24.

    Article  CAS  PubMed  Google Scholar 

  22. Gao S-m, Chen C-q, Wang L-y, Hong L-l, Wu J-b, Dong P-h, Yu F-j. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol. 2012;41:261–70.

    Article  PubMed  CAS  Google Scholar 

  23. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gill RK, Saksena S, Alrefai WA, Sarwar Z, Goldstein JL, Carroll RE, Ramaswamy K, Dudeja PK. Expression and membrane localization of MCT isoforms along the length of the human intestine. Am J Physiol Gastrointest Liver Physiol. 2005;289:C846–52.

    Article  CAS  Google Scholar 

  25. Glei M, Hofmann T, Küster K, Hollmann J, Lindhauer MG, Pool-Zobel BL. Both wheat (Triticum aestivum) bran Arabinoxylans and gut Flora-mediated fermentation products protect human Colon cells from genotoxic activities of 4-Hydroxynonenal and hydrogen peroxide. J Agric Food Chem. 2006;54:2088–95.

    Article  CAS  PubMed  Google Scholar 

  26. Gonçalves P, Araújo JR, Martel F. Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines. J Membr Biol. 2011;240:35–46.

    Article  PubMed  CAS  Google Scholar 

  27. Guo Y, Li HY. Association between helicobacter pylori infection and colorectal neoplasm risk: a meta-analysis based on east Asian population. J Cancer Res Ther. 2014:263–6.

    Google Scholar 

  28. Gupta N, Martin PM, Prasad PD, Ganapathy V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci. 2006;78:2419–25.

    Article  CAS  PubMed  Google Scholar 

  29. Han A, Bennett N, Ahmed B, Whelan J, Donohoe DR. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases. Oncotarget. 2018;9(43):27280–292.

    Google Scholar 

  30. Harig JM, Ng Ek Fau - Dudeja PK, Dudeja Pk Fau - Brasitus TA, Brasitus Ta Fau - Ramaswamy K, Ramaswamy K. Transport of n-butyrate into human colonic luminal membrane vesicles. Am J Physiol Gastrointest Liver Physiol. 1996;271:G415–22.

    Article  CAS  Google Scholar 

  31. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone Hyperacetylation. J Nutr. 2002;132:1012–7.

    Article  CAS  PubMed  Google Scholar 

  32. Hudson BD, Pandey SKTIF, Ulven TPSF, Milligan GUTF, Milligan G. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem. 2012;287:41195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hullar MA, Fu BC. Diet, the gut microbiome, and epigenetics. Cancer J. 2014;20:170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jäger S, Handschin C, St-pierre J, Spiegelman B. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci. 2007;104(29):12017–22.

    Google Scholar 

  35. Jahani-Sherafat S, Alebouyeh M, Moghim S, Amoli HA, Ghasemian-Safaei H. Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Gastroenterol Hepatol Bed Bench. 2018;11:101–9.

    PubMed  PubMed Central  Google Scholar 

  36. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145:396–406.e1-10.

    Article  CAS  PubMed  Google Scholar 

  37. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi M, Mikami D, Uwada J, Yazawa T, Kamiyama K, Kimura H, Taniguchi T, Iwano M. A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget. 2018;9(59):31342–354.

    Google Scholar 

  39. Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem. 2009;73:1837–43.

    Article  CAS  PubMed  Google Scholar 

  40. Lazarova DL, Chiaro C, Bordonaro M. Butyrate induced changes in Wnt-signaling specific gene expression in colorectal cancer cells. BMC Res Notes. 2014;7:226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 2018a;831:52–9.

    Article  CAS  PubMed  Google Scholar 

  42. Li Q, Cao L, Tian Y, Zhang P, Ding C, Lu W, Jia C, Shao C, Liu W, Wang D, Ye H, Hao H. Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol Cell Proteomics. 2018b;17:1531–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Q, Ding C, Meng T, Lu W, Liu W, Hao H, Cao L. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J Pharmacol Sci. 2017;135:148–55.

    Article  CAS  PubMed  Google Scholar 

  44. Liang Y, Hou L, Li L, Li L, Zhu L, Wang Y, Huang X, Hou Y, Zhu D, Zou H, Gu Y, Weng X, Wang Y, Li Y, Wu T, Yao M, Gross I, Gaiddon C, Luo M, Wang J, Meng X. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene. 2020;39:469–85.

    Article  CAS  PubMed  Google Scholar 

  45. Lim S-j, Choi HG, Jeon CK, Kim SH. Abstract 900: chemoresistance is induced by butyrate in colon cancer cells. Cancer Res. 2013;73:900.

    Article  Google Scholar 

  46. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1:361–70.

    Article  PubMed  CAS  Google Scholar 

  47. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294:1–8.

    Article  CAS  PubMed  Google Scholar 

  48. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–72.

    Article  CAS  PubMed  Google Scholar 

  49. Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, Zhu Y, Zhu B. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep. 2015;5:7980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martin AM, Sun EW, Rogers GB, Keating DJ. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front Physiol. 2019;10:428.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mathonnet M, Perraud A, Christou N, Akil H, Melin C, Battu S, Jauberteau M-O, Denizot Y. Hallmarks in colorectal cancer: angiogenesis and cancer stem-like cells. World J Gastroenterol. 2014;20:4189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mehta A, Soni VK, Shukla D, Vishvakarma NK. Chapter 24 – cyanobacteria: a potential source of anticancer drugs. In: Singh PK, Kumar A, Singh VK, Shrivastava AK, editors. Advances in cyanobacterial biology: Academic Press (United States). 2020;369–384.

    Google Scholar 

  53. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ohira H, Fujioka Y, Katagiri C, Mamoto R, Aoyama-Ishikawa M, Amako K, Izumi Y, Nishiumi S, Yoshida M, Usami M, Ikeda M. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb. 2013;20:425–42.

    Article  CAS  PubMed  Google Scholar 

  55. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91.

    Google Scholar 

  56. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639–350.

    Article  CAS  PubMed  Google Scholar 

  58. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan L-X, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, Caplan MJ. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci. 2013;110:4410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol. 2019;8(3):1091–115.

    Google Scholar 

  60. Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, Layden BT. SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab. 2016;27:653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;217:133–9.

    Article  CAS  PubMed  Google Scholar 

  62. Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta. 2008;1784:1873–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CMW, Scott KP, Flint HJ, Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8:1323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14.

    Article  CAS  PubMed Central  Google Scholar 

  65. Rodwell VW, Nordstrom JL, Mitschelen JJ. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74.

    Article  CAS  PubMed  Google Scholar 

  66. Sakakibara S, Yamauchi T, Oshima Y, Tsukamoto Y, Kadowaki T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006;344:597–604.

    Article  CAS  PubMed  Google Scholar 

  67. Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O’Dowd BF. A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem Biophys Res Commun. 1997;239:543–7.

    Article  CAS  PubMed  Google Scholar 

  68. Sellin JH. SCFAs: the enigma of weak electrolyte transport in the colon. Physiology. 1999;14:58–64.

    Article  CAS  Google Scholar 

  69. Singh NP, Lai HC. Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells. Anticancer Res. 2005;25(6B):4325–31.

    CAS  PubMed  Google Scholar 

  70. Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V. Short-chain fatty acid transporters: role in colonic homeostasis. Compr Physiol. 2011;8:299–314.

    Google Scholar 

  71. Sivaprakasam S, Gurav A, Paschall AV, Coe GL, Chaudhary K, Cai Y, Kolhe R, Martin P, Browning D, Huang L, Shi H, Sifuentes H, Vijay-Kumar M, Thompson SA, Munn DH, Mellor A, McGaha TL, Shiao P, Cutler CW, Liu K, Ganapathy V, Li H, Singh N. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis. 2016a;5:e238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016b;164:144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Skarkova V, Kralova V, Vitovcova B, Rudolf E. Selected aspects of Chemoresistance mechanisms in colorectal carcinoma-a focus on epithelial-to-mesenchymal transition, autophagy, and apoptosis. Cell. 2019;8:234.

    Article  CAS  Google Scholar 

  74. Soni VK, Shukla D, Kumar A, Vishvakarma NK. Curcumin circumvent lactate-induced Chemoresistance in hepatic cancer cells through modulation of Hydroxycarboxylic acid receptor-1. Int J Biochem Cell Biol. 2020;123:105752.

    Article  CAS  PubMed  Google Scholar 

  75. Stoddart LA, Smith NJ, Jenkins L, Brown AJ, Milligan G. Conserved polar residues in transmembrane domains V, VI, and VII of free fatty acid receptor 2 and free fatty acid receptor 3 are required for the binding and function of short chain fatty acids. J Biol Chem. 2008;283:32913–24.

    Article  CAS  PubMed  Google Scholar 

  76. Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52:1–8.

    Article  CAS  PubMed  Google Scholar 

  77. Tang Y, Chen Y, Jiang H, Robbins GT, Nie D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer. 2011b;128:847–56.

    Article  CAS  PubMed  Google Scholar 

  78. Tang Y, Chen Y, Jiang H, Nie D. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Cell Death Differ. 2011a;18:602–18.

    Article  CAS  PubMed  Google Scholar 

  79. Tarashi S, Siadat SD, Badi SA, Zali M, Biassoni R, Ponzoni M, Moshiri A. Gut Bacteria and their metabolites: which one is the defendant for colorectal cancer? Microorganisms. 2019;7:561.

    Article  CAS  PubMed Central  Google Scholar 

  80. Teramae H, Yoshikawa T, Inoue R, Ushida K, Takebe K, Nio-Kobayashi J, Iwanaga T. The cellular expression of SMCT2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract. Biomed Res (Tokyo, Japan). 2010;31:239–49.

    Article  CAS  Google Scholar 

  81. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, Prasad PD, Ganapathy V. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69:2826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thirunavukkarasan M, Wang C, Rao A, Hind T, Teo YR, Siddiquee AA-M, Goghari MAI, Kumar AP, Herr DR. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One. 2017;12:e0186334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.

    Article  CAS  PubMed  Google Scholar 

  84. Tungland B. Chapter 2 – short-chain fatty acid production and functional aspects on host metabolism. In: Tungland B, editor. Human microbiota in health and disease: Academic Press (United States). 2018;37–106.

    Google Scholar 

  85. Tyagi S, Venugopalakrishnan J, Ramaswamy K, Dudeja PK. Mechanism of n-butyrate uptake in the human proximal colonic basolateral membranes. Am J Physiol Gastrointest Liver Physiol. 2002;282:G676–82.

    Article  CAS  PubMed  Google Scholar 

  86. Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM. Role of short-chain fatty acids in colonic HCO(3) secretion. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1217–26.

    Article  CAS  PubMed  Google Scholar 

  87. Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011;22:849–55.

    Article  CAS  PubMed  Google Scholar 

  88. Vishvakarma NK, Singh SM. Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: implication in antitumor activation of tumor-associated macrophages. Immunol Lett. 2010;134:83–92.

    Article  CAS  PubMed  Google Scholar 

  89. Vishvakarma NK, Singh SM. Augmentation of myelopoiesis in a murine host bearing a T cell lymphoma following in vivo administration of proton pump inhibitor pantoprazole. Biochimie. 2011a;93:1786–96.

    Article  CAS  PubMed  Google Scholar 

  90. Vishvakarma NK, Singh SM. Mechanisms of tumor growth retardation by modulation of pH regulation in the tumor-microenvironment of a murine T cell lymphoma. Biomed Pharmacother. 2011b;65:27–39.

    Article  CAS  PubMed  Google Scholar 

  91. Wang GA-O, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol. 2019;234:17023–49.

    Article  CAS  PubMed  Google Scholar 

  92. Wang X, Wang J, Rao B, Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017;13:2848–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK, Zeng B, Chan FKL, Sung JJY, Wei H, Yu J. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 2017;153:1621–33.

    Article  PubMed  Google Scholar 

  94. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16:690–704.

    Article  CAS  PubMed  Google Scholar 

  95. Wu X, Wu Y, He L, Wu L, Wang X, Liu Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer. 2018;9:2510–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019;25:968–76.

    Article  CAS  PubMed  Google Scholar 

  97. Yonezawa T, Kobayashi Y, Obara Y. Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line. Cell Signal. 2007;19:185–93.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang J, Yi M, Zha L, Chen S, Li Z, Li C, Gong M, Deng H, Chu X, Chen J, Zhang Z, Mao L, Sun S. Sodium butyrate induces endoplasmic reticulum stress and autophagy in colorectal cells: implications for apoptosis. PLoS One. 2016;11:e0147218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8:59950–64.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhou Q, Li G, Zuo S, Zhu W, Yuan X. RNA sequencing analysis of molecular basis of sodium butyrate-induced growth inhibition on colorectal cancer cell lines. Biomed Res Int. 2019

    Google Scholar 

  101. Zumkeller N, Brenner H, Zwahlen M, Rothenbacher D. Helicobacter pylori infection and colorectal cancer risk: a meta-analysis. J Cancer Res Therap. 2016;12(Supplement):15–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, A. et al. (2021). Short-Chain Fatty Acids as Therapeutic Agents in Colon Malignancies. In: Nagaraju, G.P., Shukla, D., Vishvakarma, N.K. (eds) Colon Cancer Diagnosis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63369-1_10

Download citation

Publish with us

Policies and ethics