Skip to main content

Mechanisms of Lung Cyst Formation

  • Chapter
  • First Online:
Diffuse Cystic Lung Diseases

Part of the book series: Respiratory Medicine ((RM))

  • 589 Accesses

Abstract

Cystic lung diseases are a group of rare diseases characterised by discrete areas of parenchymal destruction. This chapter will contrast the diverse mechanisms of parenchymal loss that occur in common cystic lung diseases such as chronic obstructive pulmonary disease (COPD) with those of rare disorders associated with dysregulation of specific molecular pathways. Four representative cystic lung diseases are described with reference to underlying molecular pathogenesis, mechanisms of cyst formation and pathological and radiological manifestations. We discuss how normal repair mechanisms may be deranged by processes such as senescence in COPD and how in lymphangioleiomyomatosis mechanistic target of rapamycin (mTOR) dysregulation leads to protease activation and a tumor-like microenvironment resulting in parenchymal destruction. In pulmonary Langerhans cell histiocytosis (PLCH), activation of the BRAF/MEK/ERK pathway in dendritic cells interacts with cigarette smoke to cause a destructive bronchiolitis. In Birt-Hogg-Dubé syndrome (BHD), loss of the tumour suppressor folliculin leads to defects in cell-cell interactions and shear-mediated lung damage. Finally, we discuss the poorly understood group of cystic lung diseases caused by abnormal immunoglobulin deposition in the lung. The end result in each case is thin-walled cystic change in the pulmonary parenchyma, which can have consequences that range from no symptoms, to recurrent pneumothorax, to chronic respiratory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taggart C, Mall MA, Lalmanach G, Cataldo D, Ludwig A, Janciauskiene S, et al. Protean proteases: at the cutting edge of lung diseases. Eur Respir J. 2017;49(2):1501200.

    Article  PubMed  CAS  Google Scholar 

  2. Bellac CL, Dufour A, Krisinger MJ, Loonchanta A, Starr AE, Auf dem Keller U, et al. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis. Cell Rep. 2014;9(2):618–32.

    Article  CAS  PubMed  Google Scholar 

  3. Mallia-Milanes B, Dufour A, Philp C, Solis N, Klein T, Fischer M, et al. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations. Am J Physiol Lung Cell Mol Physiol. 2018;315(6):L1003–L1014.

    Google Scholar 

  4. Chen F, Fine A. Stem cells in lung injury and repair. Am J Pathol. 2016;186(10):2544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Birch J, Barnes PJ, Passos JF. Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Ther. 2018;183:34–49.

    Article  CAS  PubMed  Google Scholar 

  6. McCormack FX, Travis WD, Colby TV, Henske EP, Moss J. Lymphangioleiomyomatosis: calling it what it is: a low-grade, destructive, metastasizing neoplasm. Am J Respir Crit Care Med. 2012;186(12):1210–2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson SR, Taveira-DaSilva AM, Moss J. Lymphangioleiomyomatosis. Clin Chest Med. 2016;37(3):389–403.

    Article  PubMed  Google Scholar 

  8. Crooks DM, Pacheco-Rodriguez G, DeCastro RM, McCoy JP Jr, Wang JA, Kumaki F, et al. Molecular and genetic analysis of disseminated neoplastic cells in lymphangioleiomyomatosis. Proc Natl Acad Sci U S A. 2004;101(50):17462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karbowniczek M, Astrinidis A, Balsara BR, Testa JR, Lium JH, Colby TV, et al. Recurrent lymphangiomyomatosis after transplantation: genetic analyses reveal a metastatic mechanism. Am J Respir Crit Care Med. 2003;167(7):976–82.

    Article  PubMed  Google Scholar 

  10. Johnson SR, Tattersfield AE. Decline in lung function in lymphangioleiomyomatosis: relation to menopause and progesterone treatment. Am J Respir Crit Care Med. 1999;160(2):628–33.

    Article  CAS  PubMed  Google Scholar 

  11. Clements D, Chang YCW, Johnson SR. Lymphangioleiomyomatosis: bench to bedside. European Respiratory Monograph. 2009;46:176–207.

    Google Scholar 

  12. Seyama K, Kumasaka T, Souma S, Sato T, Kurihara M, Mitani K, et al. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat Res Biol. 2006;4(3):143–52.

    Article  CAS  PubMed  Google Scholar 

  13. Miller S, Coveney C, Johnson J, Farmaki AE, Gupta N, Tobin MD, et al. The vitamin D binding protein axis modifies disease severity in Lymphangioleiomyomatosis. Eur Respir J. 2018;9(13993003):00951–2018.

    Google Scholar 

  14. Kristof AS. mTOR signaling in lymphangioleiomyomatosis. Lymphat Res Biol. 2010;8(1):33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saxton RA, Sabatini DM. mTOR Signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    Article  CAS  PubMed  Google Scholar 

  17. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell. 2012;47(4):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nellist M, Sancak O, Goedbloed MA, Rohe C, van Netten D, Mayer K, et al. Distinct effects of single amino-acid changes to tuberin on the function of the tuberin-hamartin complex. Eur J Hum Genet. 2005;13(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  19. Cudzilo CJ, Szczesniak RD, Brody AS, Rattan MS, Krueger DA, Bissler JJ, et al. Lymphangioleiomyomatosis screening in women with tuberous sclerosis. Chest. 2013;144(2):578–85.

    Article  PubMed  Google Scholar 

  20. Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A. 2000;97(11):6085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adriaensen ME, Schaefer-Prokop CM, Duyndam DA, Zonnenberg BA, Prokop M. Radiological evidence of lymphangioleiomyomatosis in female and male patients with tuberous sclerosis complex. Clin Radiol. 2011;66(7):625–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ryu JH, Sykes AM, Lee AS, Burger CD. Cystic lung disease is not uncommon in men with tuberous sclerosis complex. Respir Med. 2012;106(11):1586–90.

    Article  PubMed  Google Scholar 

  23. Astrinidis A, Khare L, Carsillo T, Smolarek T, Au KS, Northrup H, et al. Mutational analysis of the tuberous sclerosis gene TSC2 in patients with pulmonary lymphangioleiomyomatosis. J Med Genet. 2000;37(1):55–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Juvet SC, McCormack FX, Kwiatkowski DJ, Downey GP. Molecular pathogenesis of lymphangioleiomyomatosis: lessons learned from orphans. Am J Respir Cell Mol Biol. 2007;36(4):398–408.

    Article  CAS  PubMed  Google Scholar 

  25. Ryu JH, Moss J, Beck GJ, Lee JC, Brown KK, Chapman JT, et al. The NHLBI lymphangioleiomyomatosis registry: characteristics of 230 patients at enrollment. Am J Respir Crit Care Med. 2006;173(1):105–11.

    Article  PubMed  Google Scholar 

  26. Schiavina M, Di Scioscio V, Contini P, Cavazza A, Fabiani A, Barberis M, et al. Pulmonary lymphangioleiomyomatosis in a karyotypically normal man without tuberous sclerosis complex. Am J Respir Crit Care Med. 2007;176(1):96–8.

    Article  PubMed  Google Scholar 

  27. Henske EP, McCormack FX. Lymphangioleiomyomatosis – a wolf in sheep’s clothing. J Clin Invest. 2012;122(11):3807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su HH, Wu W, Guo Y, Chen HD, Shan SJ. Paediatric Erdheim-Chester disease with aggressive skin manifestations. Br J Dermatol. 2018;178(1):261–4.

    Article  PubMed  Google Scholar 

  29. Clements D, Dongre A, Krymskaya VP, Johnson SR. Wild type mesenchymal cells contribute to the lung pathology of lymphangioleiomyomatosis. PLoS One. 2015;10(5):e0126025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Matsui K. K Riemenschneider W, Hilbert Sl, Yu ZX, Takeda K, Travis WD, et al. hyperplasia of type II pneumocytes in pulmonary lymphangioleiomyomatosis. Arch Pathol Lab Med. 2000;124(11):1642–8.

    CAS  PubMed  Google Scholar 

  31. Kumasaka T, Seyama K, Mitani K, Souma S, Kashiwagi S, Hebisawa A, et al. Lymphangiogenesis-mediated shedding of LAM cell clusters as a mechanism for dissemination in lymphangioleiomyomatosis. Am J Surg Pathol. 2005;29(10):1356–66.

    Article  PubMed  Google Scholar 

  32. Finlay GA. The LAM cell: what is it, where does it come from, and why does it grow? Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L690-3.

    Google Scholar 

  33. Carbone M. Feasibility of immunotherapy for lymphangioleiomyomatosis. Am J Pathol. 2009;175(6):2252–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Edwards ST, Cruz AC, Donnelly S, Dazin PF, Schulman ES, Jones KD, et al. C-Kit immunophenotyping and metalloproteinase expression profiles of mast cells in interstitial lung diseases. J Pathol. 2005;206(3):279–90.

    Article  CAS  PubMed  Google Scholar 

  35. Chottanapund S, Van Duursen MB, Navasumrit P, Hunsonti P, Timtavorn S, Ruchirawat M, et al. Anti-aromatase effect of resveratrol and melatonin on hormonal positive breast cancer cells co-cultured with breast adipose fibroblasts. Toxicol In Vitro. 2014;28(7):1215–21.

    Article  CAS  PubMed  Google Scholar 

  36. Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 2004;10(6):311–8.

    Article  CAS  PubMed  Google Scholar 

  37. Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev. 2007;87(1):69–98.

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi T, Fleming MV, Stetler-Stevenson WG, Liotta LA, Moss J, Ferrans VJ, et al. Immunohistochemical study of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in pulmonary lymphangioleiomyomatosis (LAM). Hum Pathol. 1997;28(9):1071–8.

    Article  CAS  PubMed  Google Scholar 

  39. Matsui K, Takeda K, Yu ZX, Travis WD, Moss J, Ferrans VJ. Role for activation of matrix metalloproteinases in the pathogenesis of pulmonary lymphangioleiomyomatosis. Arch Pathol Lab Med. 2000;124(2):267–75.

    CAS  PubMed  Google Scholar 

  40. Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR. Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med. 1991;2(3):297–321.

    Article  CAS  PubMed  Google Scholar 

  41. Pimenta SP, Baldi BG, Kairalla RA, Carvalho CR. Doxycycline use in patients with lymphangioleiomyomatosis: biomarkers and pulmonary function response. J Bras Pneumol. 2013;39(1):5–15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chang WY, Cane J. L., Kumaran M, Lewis S, Tattersfield AE, Johnson SR. A 2-year randomised placebo-controlled trial of doxycycline for lymphangioleiomyomatosis. Eur Respir J. 2014;43(4):1114–23.

    Article  CAS  PubMed  Google Scholar 

  43. Zhe X, Yang Y, Schuger L. Imbalanced plasminogen system in lymphangioleiomyomatosis: potential role of serum response factor. Am J Respir Cell Mol Biol. 2005;32(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  44. Chilosi M, Pea M, Martignoni G, Brunelli M, Gobbo S, Poletti V, et al. Cathepsin-k expression in pulmonary lymphangioleiomyomatosis. Mod Pathol. 2009;22(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao Q, Jia Y, Xiao Y. Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun. 2009;380(4):721–3.

    Article  CAS  PubMed  Google Scholar 

  46. Dongre A, Clements D, Fisher AJ, Johnson SR. Cathepsin K in Lymphangioleiomyomatosis: LAM cell-fibroblast interactions enhance protease activity by extracellular acidification. Am J Pathol. 2017;187(8):1750–62.

    Article  CAS  PubMed  Google Scholar 

  47. Montgomery N, Hill A, McFarlane S, Neisen J, O’Grady A, Conlon S, et al. CD44 enhances invasion of basal-like breast cancer cells by upregulating serine protease and collagen-degrading enzymatic expression and activity. Breast Cancer Res. 2012;14(3):R84.

    Google Scholar 

  48. Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ, et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest. 2000;106(9):1081–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Repnik U, Starr AE, Overall CM, Turk B. Cysteine Cathepsins activate ELR chemokines and inactivate non-ELR chemokines. J Biol Chem. 2015;290(22):13800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McQueney M, Amegadzie BY, D’Alessio K, Hanning CR, McLaughlin MM, McNulty D, et al. Autocatalytic activation of human cathepsin K. J Biol Chem. 1997;272(21):13955–60.

    Article  CAS  PubMed  Google Scholar 

  51. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012;1:68–88.

    Article  CAS  Google Scholar 

  52. McDonald PC, Winum JY, Supuran CT, Dedhar S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget. 2012;3(1):84–97.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, et al. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 2004;35(5):1144–56.

    Article  CAS  PubMed  Google Scholar 

  54. Shen A, Iseman MD, Waldron JA, King TE. Exacerbation of pulmonary lymphangioleiomyomatosis by exogenous estrogens. Chest. 1987;91(5):782–5.

    Article  CAS  PubMed  Google Scholar 

  55. Gu X, Yu JI, Ilter D, Blenis N, Henske EP, Blenis J. Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci U S A. 2013;110(37):14960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A, et al. Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci U S A. 2009;106(8):2635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Banner AS, Carrington CB, Emory WB, Kittle F, Leonard G, Ringus J, et al. Efficacy of oophorectomy in lymphangioleiomyomatosis and benign metastasizing leiomyoma. N Engl J Med. 1981;305(4):204–9.

    Article  CAS  PubMed  Google Scholar 

  58. Schiavina M, Contini P, Fabiani A, Cinelli F, Di Scioscio V, Zompatori M, et al. Efficacy of hormonal manipulation in lymphangioleiomyomatosis. A 20-year-experience in 36 patients. Sarcoidosis Vasc Diffuse Lung Dis. 2007;24(1):39–50.

    PubMed  Google Scholar 

  59. Rossi GA, Balbi B, Oddera S, Lantero S, Ravazzoni C. Response to treatment with an analog of the luteinizing-hormone-releasing hormone in a patient with pulmonary lymphangioleiomyomatosis. Am Rev Respir Dis. 1991;143(1):174–6.

    Article  CAS  PubMed  Google Scholar 

  60. Johnson SR. Lymphangioleiomyomatosis. Eur Respir J. 2006;27(5):1056–65.

    Article  CAS  PubMed  Google Scholar 

  61. Lu C, Lee HS, Pappas GP, Dilling DF, Burger CD, Shifren A, et al. A phase II clinical trial of an aromatase inhibitor for postmenopausal women with Lymphangioleiomyomatosis. Ann Am Thorac Soc. 2017;14(6):919–28.

    Article  PubMed  Google Scholar 

  62. Bee J, Fuller S, Miller S, Johnson SR. Lung function response and side effects to rapamycin for lymphangioleiomyomatosis: a prospective national cohort study. Thorax. 2018;73(4):369–75.

    Article  PubMed  Google Scholar 

  63. Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J. Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with sirolimus. Ann Intern Med. 2011;154(12):797–805.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu HJ, Lizotte PH, Du H, Speranza MC, Lam HC, Vaughan S, et al. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy. JCI Insight. 2018;3(8):98674. LID – https://doi.org/10.1172/jci.insight.98674 (doi) LID – 98674 (pii)

  65. Tazi A, de Margerie C, Naccache JM, Fry S, Dominique S, Jouneau S, et al. The natural history of adult pulmonary Langerhans cell histiocytosis: a prospective multicentre study. Orphanet J Rare Dis. 2015;10:30.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vassallo R, Ryu JH, Schroeder DR, Decker PA, Limper AH. Clinical outcomes of pulmonary Langerhans’-cell histiocytosis in adults. N Engl J Med. 2002;346(7):484–90.

    Article  PubMed  Google Scholar 

  67. Arico M, Girschikofsky M, Genereau T, Klersy C, McClain K, Grois N, et al. Langerhans cell histiocytosis in adults. Report from the international registry of the Histiocyte society. Eur J Cancer. 2003;39(16):2341–8.

    Article  CAS  PubMed  Google Scholar 

  68. Travis WD, Borok Z, Roum JH, Zhang J, Feuerstein I, Ferrans VJ, et al. Pulmonary Langerhans cell granulomatosis (histiocytosis X). A clinicopathologic study of 48 cases. Am J Surg Pathol. 1993;17(10):971–86.

    Article  CAS  PubMed  Google Scholar 

  69. Friedman PJ, Liebow AA, Sokoloff J. Eosinophilic granuloma of lung. Clinical aspects of primary histiocytosis in the adult. Medicine (Baltimore). 1981;60(6):385–96.

    Article  CAS  Google Scholar 

  70. Schonfeld N, Frank W, Wenig S, Uhrmeister P, Allica E, Preussler H, et al. Clinical and radiologic features, lung function and therapeutic results in pulmonary histiocytosis X. Respiration. 1993;60(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  71. Sholl LM, Hornick JL, Pinkus JL, Pinkus GS, Padera RF. Immunohistochemical analysis of langerin in langerhans cell histiocytosis and pulmonary inflammatory and infectious diseases. Am J Surg Pathol. 2007;31(6):947–52.

    Article  PubMed  Google Scholar 

  72. West HC, Bennett CL. Redefining the role of Langerhans cells as immune regulators within the skin. Front Immunol. 2017;8:1941.

    Article  PubMed  CAS  Google Scholar 

  73. Willman CL. Detection of clonal histiocytes in Langerhans cell histiocytosis: biology and clinical significance. Br J Cancer Suppl. 1994;23:S29–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Willman CL, Busque L, Griffith BB, Favara BE, McClain KL, Duncan MH, et al. Langerhans’-cell histiocytosis (histiocytosis X) – a clonal proliferative disease. N Engl J Med. 1994;331(3):154–60.

    Article  CAS  PubMed  Google Scholar 

  75. Yu RC, Chu C, Buluwela L, Chu AC. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet. 1994;343(8900):767–8.

    Article  CAS  PubMed  Google Scholar 

  76. Weintraub M, Bhatia KG, Chandra RS, Magrath IT, Ladisch S. p53 expression in Langerhans cell histiocytosis. J Pediatr Hematol Oncol. 1998;20(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  77. Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Satoh T, Smith A, Sarde A, Lu HC, Mian S, Trouillet C, et al. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS One. 2012;7(4):e33891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haroche J, Charlotte F, Arnaud L, von Deimling A, Helias-Rodzewicz Z, Hervier B, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120(13):2700–3.

    Article  CAS  PubMed  Google Scholar 

  80. Sahm F, Capper D, Preusser M, Meyer J, Stenzinger A, Lasitschka F, et al. BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis. Blood. 2012;120(12):e28–34.

    Article  CAS  PubMed  Google Scholar 

  81. Roden AC, Hu X, Kip S, Parrilla Castellar ER, Rumilla KM, Vrana JA, et al. BRAF V600E expression in Langerhans cell histiocytosis: clinical and immunohistochemical study on 25 pulmonary and 54 extrapulmonary cases. Am J Surg Pathol. 2014;38(4):548–51.

    Article  PubMed  Google Scholar 

  82. Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;10:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62(23):6997–7000.

    CAS  PubMed  Google Scholar 

  84. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  85. Makita Y, Narumi Y, Yoshida M, Niihori T, Kure S, Fujieda K, et al. Leukemia in cardio-facio-cutaneous (CFC) syndrome: a patient with a germline mutation in BRAF proto-oncogene. J Pediatr Hematol Oncol. 2007;29(5):287–90.

    Article  CAS  PubMed  Google Scholar 

  86. El-Osta H, Falchook G, Tsimberidou A, Hong D, Naing A, Kim K, et al. BRAF mutations in advanced cancers: clinical characteristics and outcomes. PLoS One. 2011;6(10):e25806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38(3):294–6.

    Article  CAS  PubMed  Google Scholar 

  88. Nelson DS, Quispel W, Badalian-Very G, van Halteren AG, van den Bos C, Bovee JV, et al. Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood. 2014;123(20):3152–5.

    Article  CAS  PubMed  Google Scholar 

  89. Brown NA, Furtado LV, Betz BL, Kiel MJ, Weigelin HC, Lim MS, et al. High prevalence of somatic MAP 2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655–8.

    Article  CAS  PubMed  Google Scholar 

  90. Nelson DS, van Halteren A, Quispel WT, van den Bos C, Bovee JV, Patel B, et al. MAP 2K1 and MAP 3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer. 2015;54(6):361–8.

    Article  CAS  PubMed  Google Scholar 

  91. Mourah S, How-Kit A, Meignin V, Gossot D, Lorillon G, Bugnet E, et al. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47(6):1785–96.

    Article  CAS  PubMed  Google Scholar 

  92. Lommatzsch M, Bratke K, Stoll P, Mulleneisen N, Prall F, Bier A, et al. Bronchoalveolar lavage for the diagnosis of pulmonary Langerhans cell histiocytosis. Respir Med. 2016;119:168–74.

    Article  PubMed  Google Scholar 

  93. Soler P, Chollet S, Jacque C, Fukuda Y, Ferrans VJ, Basset F. Immunocytochemical characterization of pulmonary histiocytosis X cells in lung biopsies. Am J Pathol. 1985;118(3):439–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Marchal J, Kambouchner M, Tazi A, Valeyre D, Soler P. Expression of apoptosis-regulatory proteins in lesions of pulmonary Langerhans cell histiocytosis. Histopathology. 2004;45(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  95. Tazi A, Moreau J, Bergeron A, Dominique S, Hance AJ, Soler P. Evidence that Langerhans cells in adult pulmonary Langerhans cell histiocytosis are mature dendritic cells: importance of the cytokine microenvironment. J Immunol. 1999;163(6):3511–5.

    CAS  PubMed  Google Scholar 

  96. Fukuda Y, Basset F, Soler P, Ferrans VJ, Masugi Y, Crystal RG. Intraluminal fibrosis and elastic fiber degradation lead to lung remodeling in pulmonary Langerhans cell granulomatosis (histiocytosis X). Am J Pathol. 1990;137(2):415–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Colombat M, Caudroy S, Lagonotte E, Mal H, Danel C, Stern M, et al. Pathomechanisms of cyst formation in pulmonary light chain deposition disease. Eur Respir J. 2008;32(5):1399–403.

    Article  CAS  PubMed  Google Scholar 

  98. Landi C, Bargagli E, Magi B, Prasse A, Muller-Quernheim J, Bini L, et al. Proteome analysis of bronchoalveolar lavage in pulmonary langerhans cell histiocytosis. J Clin Bioinforma. 2011;1:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lorillon G, Bergeron A, Detourmignies L, Jouneau S, Wallaert B, Frija J, et al. Cladribine is effective against cystic pulmonary Langerhans cell histiocytosis. Am J Respir Crit Care Med. 2012;186(9):930–2.

    Article  PubMed  Google Scholar 

  100. Lorillon G, Tazi A. How I manage pulmonary Langerhans cell histiocytosis. Eur Respir Rev. 2017;26(145):170070.

    Google Scholar 

  101. Birt AR, Hogg GR, Dube WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1977;113(12):1674–7.

    Article  CAS  PubMed  Google Scholar 

  102. Toro JR, Glenn G, Duray P, Darling T, Weirich G, Zbar B, et al. Birt-Hogg-Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol. 1999;135(10):1195–202.

    Article  CAS  PubMed  Google Scholar 

  103. Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dube syndrome. Cancer Epidemiol Biomark Prev. 2002;11(4):393–400.

    Google Scholar 

  104. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell. 2002;2(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  105. Schmidt LS, Warren MB, Nickerson ML, Weirich G, Matrosova V, Toro JR, et al. Birt-Hogg-Dube syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet. 2001;69(4):876–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lim DH, Rehal PK, Nahorski MS, Macdonald F, Claessens T, Van Geel M, et al. A new locus-specific database (LSDB) for mutations in the folliculin (FLCN) gene. Hum Mutat. 2010;31(1):E1043–51.

    Article  PubMed  Google Scholar 

  107. Vocke CD, Yang Y, Pavlovich CP, Schmidt LS, Nickerson ML, Torres-Cabala CA, et al. High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dube-associated renal tumors. J Natl Cancer Inst. 2005;97(12):931–5.

    Article  CAS  PubMed  Google Scholar 

  108. Hasumi Y, Baba M, Ajima R, Hasumi H, Valera VA, Klein ME, et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci U S A. 2009;106(44):18722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hartman TR, Nicolas E, Klein-Szanto A, Al-Saleem T, Cash TP, Simon MC, et al. The role of the Birt-Hogg-Dube protein in mTOR activation and renal tumorigenesis. Oncogene. 2009;28(13):1594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hudon V, Sabourin S, Dydensborg AB, Kottis V, Ghazi A, Paquet M, et al. Renal tumour suppressor function of the Birt-Hogg-Dube syndrome gene product folliculin. J Med Genet. 2010;47(3):182–9.

    Article  CAS  PubMed  Google Scholar 

  111. van Steensel MA, Verstraeten VL, Frank J, Kelleners-Smeets NW, Poblete-Gutierrez P, Marcus-Soekarman D, et al. Novel mutations in the BHD gene and absence of loss of heterozygosity in fibrofolliculomas of Birt-Hogg-Dube patients. J Invest Dermatol. 2007;127(3):588–93.

    Article  PubMed  CAS  Google Scholar 

  112. Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci U S A. 2006;103(42):15552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hasumi H, Baba M, Hong SB, Hasumi Y, Huang Y, Yao M, et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene. 2008;415(1–2):60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Takagi Y, Kobayashi T, Shiono M, Wang L, Piao X, Sun G, et al. Interaction of folliculin (Birt-Hogg-Dube gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene. 2008;27(40):5339–47.

    Article  CAS  PubMed  Google Scholar 

  115. Medvetz DA, Khabibullin D, Hariharan V, Ongusaha PP, Goncharova EA, Schlechter T, et al. Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion. PLoS One. 2012;7(11):e47842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nahorski MS, Seabra L, Straatman-Iwanowska A, Wingenfeld A, Reiman A, Lu X, et al. Folliculin interacts with p0071 (plakophilin-4) and deficiency is associated with disordered RhoA signalling, epithelial polarization and cytokinesis. Hum Mol Genet. 2012;21(24):5268–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Graham RB, Nolasco M, Peterlin B, Garcia CK. Nonsense mutations in folliculin presenting as isolated familial spontaneous pneumothorax in adults. Am J Respir Crit Care Med. 2005;172(1):39–44.

    Article  PubMed  Google Scholar 

  118. Kumasaka T, Hayashi T, Mitani K, Kataoka H, Kikkawa M, Tobino K, et al. Characterization of pulmonary cysts in Birt-Hogg-Dube syndrome: histopathological and morphometric analysis of 229 pulmonary cysts from 50 unrelated patients. Histopathology. 2014;65(1):100–10.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tobino K, Gunji Y, Kurihara M, Kunogi M, Koike K, Tomiyama N, et al. Characteristics of pulmonary cysts in Birt-Hogg-Dube syndrome: thin-section CT findings of the chest in 12 patients. Eur J Radiol. 2011;77(3):403–9.

    Article  PubMed  Google Scholar 

  120. Tobino K, Hirai T, Johkoh T, Fujimoto K, Kawaguchi A, Tomiyama N, et al. Difference of the progression of pulmonary cysts assessed by computed tomography among COPD, lymphangioleiomyomatosis, and Birt-Hogg-Dube syndrome. PLoS One. 2017;12(12):e0188771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Furuya M, Tanaka R, Koga S, Yatabe Y, Gotoda H, Takagi S, et al. Pulmonary cysts of Birt-Hogg-Dube syndrome: a clinicopathologic and immunohistochemical study of 9 families. Am J Surg Pathol. 2012;36(4):589–600.

    Article  PubMed  Google Scholar 

  122. Koga S, Furuya M, Takahashi Y, Tanaka R, Yamaguchi A, Yasufuku K, et al. Lung cysts in Birt-Hogg-Dube syndrome: histopathological characteristics and aberrant sequence repeats. Pathol Int. 2009;59(10):720–8.

    Article  CAS  PubMed  Google Scholar 

  123. Warren MB, Torres-Cabala CA, Turner ML, Merino MJ, Matrosova VY, Nickerson ML, et al. Expression of Birt-Hogg-Dube gene mRNA in normal and neoplastic human tissues. Mod Pathol. 2004;17(8):998–1011.

    Article  CAS  PubMed  Google Scholar 

  124. Goncharova EA, Goncharov DA, James ML, Atochina-Vasserman EN, Stepanova V, Hong SB, et al. Folliculin controls lung alveolar enlargement and epithelial cell survival through E-cadherin, LKB1, and AMPK. Cell Rep. 2014;7(2):412–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Massaro GD, Massaro D. Postnatal lung growth: evidence that the gas-exchange region grows fastest at the periphery. Am J Phys. 1993;265(4 Pt 1):L319–22.

    CAS  Google Scholar 

  126. Hoshika Y, Takahashi F, Togo S, Hashimoto M, Nara T, Kobayashi T, et al. Haploinsufficiency of the folliculin gene leads to impaired functions of lung fibroblasts in patients with Birt-Hogg-Dube syndrome. Physiol Rep. 2016;4(21):e13025.

    Google Scholar 

  127. Dunsmore SE, Lee YC, Martinez-Williams C, Rannels DE. Synthesis of fibronectin and laminin by type II pulmonary epithelial cells. Am J Phys. 1996;270(2 Pt 1):L215–23.

    CAS  Google Scholar 

  128. Johannesma PC, Houweling AC, van Waesberghe JH, van Moorselaar RJ, Starink TM, Menko FH, et al. The pathogenesis of pneumothorax in Birt-Hogg-Dube syndrome: a hypothesis. Respirology. 2014;19(8):1248–50.

    Article  PubMed  Google Scholar 

  129. Kennedy JC, Khabibullin D, Henske EP. Mechanisms of pulmonary cyst pathogenesis in Birt-Hogg-Dube syndrome: the stretch hypothesis. Semin Cell Dev Biol. 2016;52:47–52.

    Article  CAS  PubMed  Google Scholar 

  130. Khabibullin D, Medvetz DA, Pinilla M, Hariharan V, Li C, Hergrueter A, et al. Folliculin regulates cell-cell adhesion, AMPK, and mTORC1 in a cell-type-specific manner in lung-derived cells. Physiol Rep. 2014;2(8):e12107.

    Google Scholar 

  131. Jensen L, Mann H. Cystic lung disease from protein deposition: pathogenesis and associated conditions. Curr Radiol Rep. 2018;6(3):12.

    Article  Google Scholar 

  132. Randall RE, Williamson WC Jr, Mullinax F, Tung MY, Still WJ. Manifestations of systemic light chain deposition. Am J Med. 1976;60(2):293–9.

    Article  CAS  PubMed  Google Scholar 

  133. Pozzi C, Locatelli F. Kidney and liver involvement in monoclonal light chain disorders. Semin Nephrol. 2002;22(4):319–30.

    Article  CAS  PubMed  Google Scholar 

  134. Fabbian F, Stabellini N, Sartori S, Tombesi P, Aleotti A, Bergami M, et al. Light chain deposition disease presenting as paroxysmal atrial fibrillation: a case report. J Med Case Rep. 2007;1:187.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gallo G, Goni F, Boctor F, Vidal R, Kumar A, Stevens FJ, et al. Light chain cardiomyopathy. Structural analysis of the light chain tissue deposits. Am J Pathol. 1996;148(5):1397–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Koopman P, Van Dorpe J, Maes B, Dujardin K. Light chain deposition disease as a rare cause of restrictive cardiomyopathy. Acta Cardiol. 2009;64(6):821–4.

    Article  PubMed  Google Scholar 

  137. Morinaga S, Watanabe H, Gemma A, Mukai K, Nakajima T, Shimosato Y, et al. Plasmacytoma of the lung associated with nodular deposits of immunoglobulin. Am J Surg Pathol. 1987;11(12):989–95.

    Article  CAS  PubMed  Google Scholar 

  138. Kijner CH, Yousem SA. Systemic light chain deposition disease presenting as multiple pulmonary nodules. A case report and review of the literature. Am J Surg Pathol. 1988;12(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  139. Khoor A, Myers JL, Tazelaar HD, Kurtin PJ. Amyloid-like pulmonary nodules, including localized light-chain deposition: clinicopathologic analysis of three cases. Am J Clin Pathol. 2004;121(2):200–4.

    Article  PubMed  Google Scholar 

  140. Piard F, Yaziji N, Jarry O, Assem M, Martin L, Bernard A, et al. Solitary plasmacytoma of the lung with light chain extracellular deposits: a case report and review of the literature. Histopathology. 1998;32(4):356–61.

    Article  CAS  PubMed  Google Scholar 

  141. Rostagno A, Frizzera G, Ylagan L, Kumar A, Ghiso J, Gallo G. Tumoral non-amyloidotic monoclonal immunoglobulin light chain deposits (‘aggregoma’): presenting feature of B-cell dyscrasia in three cases with immunohistochemical and biochemical analyses. Br J Haematol. 2002;119(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  142. Stokes MB, Jagirdar J, Burchstin O, Kornacki S, Kumar A, Gallo G. Nodular pulmonary immunoglobulin light chain deposits with coexistent amyloid and nonamyloid features in an HIV-infected patient. Mod Pathol. 1997;10(10):1059–65.

    CAS  PubMed  Google Scholar 

  143. Colombat M, Stern M, Groussard O, Droz D, Brauner M, Valeyre D, et al. Pulmonary cystic disorder related to light chain deposition disease. Am J Respir Crit Care Med. 2006;173(7):777–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Babaei-Jadidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clements, D., Babaei-Jadidi, R., Johnson, S.R. (2021). Mechanisms of Lung Cyst Formation. In: Gupta, N., Wikenheiser-Brokamp, K.A., McCormack, F.X. (eds) Diffuse Cystic Lung Diseases. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-63365-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63365-3_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-63364-6

  • Online ISBN: 978-3-030-63365-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics