Skip to main content

The Generalized Activating Function

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy
  • 675 Accesses

Abstract

Electrical field stimulation of the heart occurs during pacing and defibrillation. In cardiac tissue, the generalized activating function is the mathematical forcing function that drives changes in cellular transmembrane potential in response to field stimulation. It is the underlying principle giving rise to virtual electrodes near a physical electrode or throughout the tissue. The pattern and strength of the virtual electrodes is the result of a complex interaction between the spatial patterns of local electric field and local tissue properties of conductivity. This review defines the generalized activating function and illustrates its utility in a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term generalized activating function has also been used by Rattay [29] to describe an activating function for neurons that incorporates fiber diameter, intracellular resistance, and membrane capacitance together with the second derivative of extracellular surface potential along the fiber axis

  2. 2.

    Roth [33] has shown that in the general case of anisotropy, a spatial scaling process can be used to equalize the conductivities in one of the domains, as was assumed here for the extracellular domain.

  3. 3.

    Note that the usage in this section of the terms virtual cathode and anode follows that commonly used in the literature, where they are linked to the sign of membrane polarization, as opposed to the sign of the generalized activating function, as mentioned earlier.

  4. 4.

    The reason the source is intracellular rather than extracellular is because of the sign of f in (7.11), which dictates that f acts like an intracellular source.

References

  1. Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential. Chaos. 1998;8(1):204–20.

    Article  PubMed  Google Scholar 

  2. Plonsey R, Barr RC. Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents. Med Biol Eng Comput. 1986;24(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  3. Krassowska W, Pilkington TC, Ideker RE. Periodic conductivity as a mechanism for cardiac stimulation and defibrillation. IEEE Trans Biomed Eng. 1987;34(7):555–60.

    Article  CAS  PubMed  Google Scholar 

  4. Trayanova N. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--II: results of simulation. IEEE Trans Biomed Eng. 1996;43(12):1141–50.

    Article  CAS  PubMed  Google Scholar 

  5. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J. 1989;55(5):987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wikswo JP Jr, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J. 1995;69(6):2195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trayanova NA, Roth BJ, Malden LJ. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation. IEEE Trans Biomed Eng. 1993;40(9):899–908.

    Article  CAS  PubMed  Google Scholar 

  8. Bishop MJ, Boyle PM, Plank G, Welsh DG, Vigmond EJ. Modeling the role of the coronary vasculature during external field stimulation. IEEE Trans Biomed Eng. 2010;57(10):2335–45.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ. Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res. 2002;91(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  10. Entcheva E, Trayanova NA, Claydon FJ. Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis. IEEE Trans Biomed Eng. 1999;46(3):260–70.

    Article  CAS  PubMed  Google Scholar 

  11. Fishler MG. Syncytial heterogeneity as a mechanism underlying cardiac far-field stimulation during defibrillation-level shocks. J Cardiovasc Electrophysiol. 1998;9(4):384–94.

    Article  CAS  PubMed  Google Scholar 

  12. Fishler MG, Vepa K. Spatiotemporal effects of syncytial heterogeneities on cardiac far-field excitations during monophasic and biphasic shocks. J Cardiovasc Electrophysiol. 1998;9(12):1310–24.

    Article  CAS  PubMed  Google Scholar 

  13. Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng. 1994;22(3–4):253–305.

    CAS  PubMed  Google Scholar 

  14. Newton JC, Knisley SB, Zhou X, Pollard AE, Ideker RE. Review of mechanisms by which electrical stimulation alters the transmembrane potential. J Cardiovasc Electrophysiol. 1999;10(2):234–43.

    Article  CAS  PubMed  Google Scholar 

  15. Basser PJ, Roth BJ. New currents in electrical stimulation of excitable tissues. Annu Rev Biomed Eng. 2000;2:377–97.

    Article  CAS  PubMed  Google Scholar 

  16. Rohr S, Fluckiger-Labrada R, Kucera JP. Photolithographically defined deposition of attachment factors as a versatile method for patterning the growth of different cell types in culture. Pflugers Arch. 2003;446(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  17. Gillis AM, Fast VG, Rohr S, Kleber AG. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. Circ Res. 1996;79(4):676–90.

    Article  CAS  PubMed  Google Scholar 

  18. Fast VG, Rohr S, Gillis AM, Kleber AG. Activation of cardiac tissue by extracellular electrical shocks: formation of ‘secondary sources’ at intracellular clefts in monolayers of cultured myocytes. Circ Res. 1998;82(3):375–85.

    Article  CAS  PubMed  Google Scholar 

  19. Gillis AM, Fast VG, Rohr S, Kleber AG. Mechanism of ventricular defibrillation. The role of tissue geometry in the changes in transmembrane potential in patterned myocyte cultures. Circulation. 2000;101(20):2438–45.

    Article  CAS  PubMed  Google Scholar 

  20. Tung L, Kleber AG. Virtual sources associated with linear and curved strands of cardiac cells. Am J Physiol Heart Circ Physiol. 2000;279(4):H1579–90.

    Article  CAS  PubMed  Google Scholar 

  21. Bittihn P, Horning M, Luther S. Negative curvature boundaries as wave emitting sites for the control of biological excitable media. Phys Rev Lett. 2012;109(11):118106.

    Article  PubMed  CAS  Google Scholar 

  22. Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 1986;33(10):974–7.

    Article  CAS  PubMed  Google Scholar 

  23. McNeal DR. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng. 1976;23(4):329–37.

    Article  CAS  PubMed  Google Scholar 

  24. Barr RC, Plonsey R. Bioelectricity: a quantitative approach. 3rd ed. Berlin: Springer; 2007.

    Google Scholar 

  25. Rattay F. Ways to approximate current-distance relations for electrically stimulated fibers. J Theor Biol. 1987;125(3):339–49.

    Article  CAS  PubMed  Google Scholar 

  26. Hoshi T, Matsuda K. Excitability cycle of cardiac muscle examined by intracellular stimulation. Jpn J Physiol. 1962;12:433–46.

    Article  CAS  PubMed  Google Scholar 

  27. Bonke FI. Passive electrical properties of atrial fibers of the rabbit heart. Pflugers Arch. 1973;339(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  28. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng. 1993;21(1):1–77.

    CAS  PubMed  Google Scholar 

  29. Rattay F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience. 1999;89(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  30. Bragard J, Sankarankutty AC, Sachse FB. Extended bidomain modeling of defibrillation: quantifying virtual electrode strengths in fibrotic myocardium. Front Physiol. 2019;10:337.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Plonsey R, Barr RC. Electric field stimulation of excitable tissue. IEEE Trans Biomed Eng. 1995;42(4):329–36.

    Article  CAS  PubMed  Google Scholar 

  32. Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J. 1997;73(3):1410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roth BJ. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol. 1992;30(6):633–46.

    Article  CAS  PubMed  Google Scholar 

  34. Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol. 1970;210(4):1041–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Susil RC, Sobie EA, Tung L. Separation between virtual sources modifies the response of cardiac tissue to field stimulation. J Cardiovasc Electrophysiol. 1999;10(5):715–27.

    Article  CAS  PubMed  Google Scholar 

  36. Krassowska W, Frazier DW, Pilkington TC, Ideker RE. Potential distribution in three-dimensional periodic myocardium – part II: application to extracellular stimulation. IEEE Trans Biomed Eng. 1990;37(3):267–84.

    Article  CAS  PubMed  Google Scholar 

  37. Warman EN, Grill WM, Durand D. Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng. 1992;39(12):1244–54.

    Article  CAS  PubMed  Google Scholar 

  38. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J. 1995;68(6):2310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plonsey R. The nature of sources of bioelectric and biomagnetic fields. Biophys J. 1982;39(3):309–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frazier DW, Krassowska W, Chen PS, Wolf PD, Dixon EG, Smith WM, Ideker RE. Extracellular field required for excitation in three-dimensional anisotropic canine myocardium. Circ Res. 1988;63(1):147–64.

    Article  CAS  PubMed  Google Scholar 

  41. Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am J Physiol Heart Circ Physiol. 2000;278(3):H688–97.

    Article  CAS  PubMed  Google Scholar 

  42. Knisley SB, Trayanova N, Aguel F. Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J. 1999;77(3):1404–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation. Chaos. 1998;8(1):221–33.

    Article  PubMed  Google Scholar 

  44. Knisley SB. Evidence for roles of the activating function in electric stimulation. IEEE Trans Biomed Eng. 2000;47(8):1114–9.

    Article  CAS  PubMed  Google Scholar 

  45. Altman KW, Plonsey R. Analysis of excitable cell activation: relative effects of external electrical stimuli. Med Biol Eng Comput. 1990;28(6):574–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Tung .

Editor information

Editors and Affiliations

Appendix

Appendix

For a one-dimensional, linear fiber, the membrane current i m per unit length contains two components: the capacitive current i C and total ionic current i ion (units of mA/cm):

$$ {i}_{\mathrm{m}}={i}_{\mathrm{C}}+{i}_{\mathrm{ion}}={c}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}+{i}_{\mathrm{ion}} $$
(7.8)

where c m is the length-specific membrane capacitance (units of F/cm). Along the intracellular pathway, intracellular current I i (units of mA) is related to i m and to the intracellular potential Φi (units of mV) according to,

$$ \frac{\partial {I}_{\mathrm{i}}}{\partial x}=-{i}_{\mathrm{m}} $$
(7.9)
$$ {r}_{\mathrm{i}}{I}_{\mathrm{i}}=-\frac{\partial {\Phi}_{\mathrm{i}}}{\partial x} $$
(7.10)

where r i is intracellular resistance per unit length (units of Ω/cm). Combining (7.9) and (7.10), utilizing the relation Φi = v m + Φe, where v m is the change in transmembrane potential (units of mV), and rearranging terms produces,

$$ {i}_{\mathrm{i}\mathrm{on}}+{c}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}-\frac{1}{r_{\mathrm{i}}}\frac{\partial^2{v}_{\mathrm{m}}}{\partial {x}^2}=\frac{1}{r_{\mathrm{i}}}f, $$
(7.11)

where f is the so-called activating function [22], defined to be

$$ f\left(x,t\right)={\left.\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial {x}^2}\right|}_{\mathrm{fiber}\ \mathrm{surface}}. $$
(7.12)

(units of mV/cm2). Prior to the onset of the stimulus, v m, its spatial derivatives and I ion are zero. Thus, (7.11) reduces to,

$$ {c}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}=\frac{1}{r_{\mathrm{i}}}f. $$
(7.13)

The polarity of the initial response of the fiber follows that of f and defines regions of virtual cathodes and anodes . Note, however, that over time as charge diffuses through the tissue, the spatial polarity of v m will no longer mirror that of f (compare Fig. 7.1c with Fig. 7.1e).

For the extracellular cathodal point source of Fig. 7.1a, Φe in the semi-infinite volume conductor is twice that for an infinite medium having conductivity σ e:

$$ {\Phi}_{\mathrm{e}}=-\frac{I_{\mathrm{e}}}{2{\pi \sigma}_{\mathrm{e}}r}=-\frac{I_{\mathrm{e}}}{2{\pi \sigma}_{\mathrm{e}}\sqrt{x^2+{z}_0^2}} $$
(7.14)

and the activating function is therefore,

$$ f={\left.\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial {x}^2}\right|}_{z={z}_0}=-\frac{I_{\mathrm{e}}}{2{\pi \sigma}_{\mathrm{e}}}\frac{2{x}^2-{z}_0^2}{{\left({x}^2+{z}_0^2\right)}^{5/2}}. $$
(7.15)

The activating function is greater than 0 in the region \( \mid x\mid <\sqrt{2}{z}_0/2 \), which from (7.13) leads to membrane depolarization, and is less than 0 for \( \mid x\mid >\sqrt{2}{z}_0/2 \), which leads to membrane hyperpolarization.

If the fiber possesses homogeneous properties, is infinitely long, and has a passive membrane with resistance R m (units of Ω-cm) so that I ion = v m /R m, (7.11) can be solved by convolving f with the response h of the fiber to a unitary point source of intracellularFootnote 4 current (i.e., the spatial impulse response) [31, 37, 38],

$$ {v}_{\mathrm{m}}(x)=\int \frac{1}{r_{\mathrm{i}}}f\left(\xi \right)h\left(x-\xi \right)\mathrm{d}\xi, $$
(7.16)

where h is well known [24] and in steady-state has the form of an exponentially decaying function

$$ h=\frac{r_{\mathrm{i}}\uplambda}{2}{I}_0{\mathrm{e}}^{-\mid x\mid /\uplambda} $$
(7.17)

with a space constant \( \uplambda =\sqrt{r_{\mathrm{m}}/{r}_{\mathrm{i}}} \), and I 0 = 1. Under transient conditions, the general time-varying response to a step input of current applied at x = 0 should be used instead of (7.17). Equations (7.17) and (7.16) are plotted in Figs. 7.1d and 7.1e, respectively, for the case where z 0 = λ.

Generalization of (7.11) to three dimensions involves the use of the bidomain equations [32]

$$ \nabla \cdot \left({\mathrm{G}}_{\mathrm{i}}\nabla {\Phi}_{\mathrm{i}}\right)=\beta \left({I}_{\mathrm{i}\mathrm{on}}+{C}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}\right), $$
(7.18)
$$ \nabla \cdot \left({\mathrm{G}}_{\mathrm{e}}\nabla {\Phi}_{\mathrm{e}}\right)=-\beta \left({I}_{\mathrm{ion}}+{C}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}\right), $$
(7.19)

where Φi, Φe, and v m are the extracellular, intracellular, and transmembrane potentials (units of mV), respectively, G i and G e are the intracellular and extracellular conductivity tensors (units of S/cm), β is the surface membrane area-to-volume ratio (units of cm−1), and I ion and C m are defined as in the one-dimensional fiber except that they are now membrane area-specific densities rather than length-specific parameters (units of mA/cm2 and F/cm2, respectively). Analogous to the case of the one-dimensional fiber, substituting the relation Φi = v m + Φe into (7.18) and rearranging terms produces [32],

$$ \beta \left({I}_{\mathrm{i}\mathrm{on}}+{C}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}\right)-\nabla \cdot \left({\mathbf{G}}_{\mathrm{i}}\nabla {v}_{\mathrm{m}}\right)=S, $$
(7.20)

where G i is the intracellular conductivity tensor relating currents in the x, y, and z directions to the potential gradients along those directions,

$$ {\mathbf{G}}_{\mathrm{i}}=\left\lfloor \begin{array}{ccc}{g}_x& {g}_{xy}& {g}_{xz}\\ {}{g}_{yx}& {g}_y& {g}_{yz}\\ {}{g}_{zx}& {g}_{zy}& {g}_z\end{array}\right\rfloor $$
(7.21)

and S is the generalized activating function (units of mA/cm3)

$$ S=\nabla \cdot \left({\mathbf{G}}_{\mathrm{i}}\nabla {\Phi}_{\mathrm{e}}\right). $$
(7.22)

Equations (7.21) and (7.22) are written in their most general form, but can be understood more readily under some simplifying conditions. First, G i is just a rotation of the conductivity tensor G f in the fiber coordinate system

$$ {\mathbf{G}}_{\mathrm{i}}={\mathbf{A}\mathbf{G}}_{\mathrm{f}}{\mathbf{A}}^{\mathrm{T}}, $$
(7.23)

where

$$ {\mathbf{G}}_{\mathrm{f}}=\left[\begin{array}{ccc}{g}_1& 0& 0\\ {}0& {g}_{\mathrm{t}}& 0\\ {}0& 0& {g}_{\mathrm{u}}\end{array}\right]. $$
(7.24)

The parameters g l, g t, and g u are the conductivities along the fiber axis and the two principal axes perpendicular to the fiber axis, respectively, and A is the rotation tensor [32]. Thus, G i consists of the conductivities of a tissue having orthotropic anisotropy, adjusted for fiber angle in the tissue.

Next, S can be written as the sum of two components [35],

$$ S=-\left(\nabla \cdot {\mathbf{G}}_{\mathrm{i}}\right)\cdot \mathbf{E}-{\mathbf{G}}_{\mathrm{i}}:\nabla \mathbf{E}, $$
(7.25)

where the electric field E = −∇Φe. This equation tells us that sources can result either from the extracellular field weighted by spatial gradients of intracellular conductivity (the first term), or by spatial gradients of the extracellular field weighted by the intracellular conductivities (the second term). When fully expanded in component form for the two-dimensional case, (7.25) becomes,

$$ S=\left(\begin{array}{c}\frac{\partial {g}_x^{\mathrm{i}}}{\partial x}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial x}+\frac{\partial {g}_{yx}^{\mathrm{i}}}{\partial x}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial y}+\frac{\partial {g}_{xy}^{\mathrm{i}}}{\partial y}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial x}+\frac{\partial {g}_y^{\mathrm{i}}}{\partial y}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial y}\\ {}+{g}_x^{\mathrm{i}}\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial {x}^2}+\left({g}_{xy}^{\mathrm{i}}+{g}_{yx}^{\mathrm{i}}\right)\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial x\partial y}+{g}_y^{\mathrm{i}}\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial {y}^2}\end{array}\right). $$
(7.26)

Other variants of (7.26) can be obtained starting with different combinations of the bidomain equations . Rewriting (7.19) as,

$$ -\beta \left({I}_{\mathrm{ion}}+{C}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}\right)=S $$
(7.27)

gives for S terms that depend on extracellular conductivities [42],

$$ S=\left(\begin{array}{c}\frac{\partial {g}_x^{\mathrm{e}}}{\partial x}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial x}+\frac{\partial {g}_{xy}^{\mathrm{e}}}{\partial x}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial y}+\frac{\partial {g}_{yx}^{\mathrm{e}}}{\partial y}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial x}+\frac{\partial {g}_y^{\mathrm{e}}}{\partial y}\frac{\partial {\Phi}_{\mathrm{e}}}{\partial y}\\ {}+{g}_x^{\mathrm{e}}\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial {x}^2}+\left({g}_{xy}^{\mathrm{e}}+{g}_{yx}^{\mathrm{e}}\right)\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial x\partial y}+{g}_y^{\mathrm{e}}\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial {y}^2}\end{array}\right). $$
(7.28)

The relative influence of the first four terms (electric field) versus the latter three terms (electric field gradient) in (7.28) has been studied experimentally in rabbit heart [42]. Alternatively, combining (7.18) and (7.19) by multiplying (7.18) by \( {g}_y^{\mathrm{e}}/\left({g}_y^{\mathrm{i}}+{g}_y^{\mathrm{e}}\right) \) and (7.19) by \( {g}_y^{\mathrm{i}}/\left({g}_y^{\mathrm{i}}+{g}_y^{\mathrm{e}}\right) \), subtracting the latter from the former, and utilizing the relation Φi = v m + Φe yields,

$$ \beta \left({I}_{\mathrm{i}\mathrm{on}}+{C}_{\mathrm{m}}\frac{\partial {v}_{\mathrm{m}}}{\partial t}\right)-\frac{g_y^{\mathrm{i}}}{g_y^{\mathrm{i}}+{g}_y^{\mathrm{e}}}\nabla \cdot \left({\mathrm{G}}_{\mathrm{i}}\nabla {v}_{\mathrm{m}}\right)=S $$
(7.29)

and gives for S terms that depend on both intra- and extracellular conductivities [43],

$$ {\displaystyle \begin{array}{c}S=\frac{1}{g_y^{\mathrm{i}}+{g}_y^{\mathrm{e}}}\left(\left[{g}_y^{\mathrm{e}}\left(\frac{\partial {g}_x^{\mathrm{i}}}{\partial x}+\frac{\partial {g}_{yx}^{\mathrm{i}}}{\partial y}\right)-{g}_y^{\mathrm{i}}\left(\frac{\partial {g}_x^{\mathrm{e}}}{\partial x}+\frac{\partial {g}_{yx}^{\mathrm{e}}}{\partial y}\right)\right]\right.\frac{\partial {\Phi}_{\mathrm{e}}}{\partial x}\\ {}+\left.\left[{g}_y^{\mathrm{e}}\left(\frac{\partial {g}_y^{\mathrm{i}}}{\partial y}+\frac{\partial {g}_{xy}^{\mathrm{i}}}{\partial x}\right)-{g}_y^{\mathrm{i}}\left(\frac{\partial {g}_y^{\mathrm{e}}}{\partial y}+\frac{\partial {g}_{xy}^{\mathrm{e}}}{\partial x}\right)\right]\frac{\partial {\Phi}_{\mathrm{e}}}{\partial y}\right)\\ {}+\frac{g_x^{\mathrm{i}}{g}_y^{\mathrm{e}}-{g}_x^{\mathrm{e}}{g}_y^{\mathrm{i}}}{g_y^{\mathrm{i}}+{g}_y^{\mathrm{e}}}\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial {x}^2}+2\frac{g_{xy}^{\mathrm{i}}{g}_y^{\mathrm{e}}-{g}_{xy}^{\mathrm{e}}{g}_y^{\mathrm{i}}}{g_y^{\mathrm{i}}+{g}_y^{\mathrm{e}}}\frac{\partial^2{\Phi}_{\mathrm{e}}}{\partial x\partial y}.\end{array}} $$
(7.30)

Just as with (7.26), S in (7.28) and (7.30) consists of the sum of terms containing first and second derivatives of Φe weighted by first derivatives of conductivities or conductivities, respectively.

According to (7.22), the generalized activating function is determined by the actual spatial distribution of extracellular potential, which as seen in the example of Fig. 7.9 is not necessarily determined solely by the applied electric field. To begin with, the presence of the cardiac fibers and their effect on the applied field need to be accounted for [45]. However, given that the fiber diameter is small compared with the typical distance to the electrode, such effects will be relatively minor [31]. More significantly, the extracellular potential distribution will be perturbed even further by the transmembrane currents that flow in response to the developing v m (dashed pathway in Fig. 7.2). This is accounted for by (7.19). Rigorously speaking, the exact solution for v m (and Φe) must satisfy both (7.20) and (7.19), whereas with the concept of the generalized activating function Φe is assumed to be known, and an approximate solution for v m is obtained by using just (7.20) alone.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tung, L. (2021). The Generalized Activating Function. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics