Skip to main content

Multistage Defibrillation Therapy

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Cardiac defibrillation through high-energy shocks has remained the most effective life-saving intervention in ventricular arrhythmias. Historically, the pain associated with high-energy shocks has impeded its use in cardioverting atrial fibrillation (AF) through an implantable device in ambulant patients. The advent of optical mapping of arrhythmia mechanisms over the last 30 years has led to a more in-depth understanding of defibrillation mechanisms and to the discovery that low-energy shocks can generate virtual electrode polarizations (VEP) throughout the captured myocardium due to a heterogeneous spread of transmembrane potentials post-shock. VEP have been shown to generate new wavefronts that collide with and extinguish fibrillatory activity. Multiple closely coupled low-energy defibrillation shocks delivered in stages through atrial and coronary sinus defibrillation leads, the so-called multistage defibrillation therapy or multipulse therapy (MPT), have been shown to terminate AF in preclinical animal studies with energies below the pain threshold. MPT generates successive new VEP-induced wavefronts that collide with and eventually extinguishing all fibrillation wavefronts in stages. Multipulse therapy has been shown to be efficacious in reducing AF burden in preclinical animal studies and is now being tested as a potential therapeutic option in reducing AF burden in a clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Atrial fibrillation

APD:

Action potential duration

ICD:

Implantable cardioverter defibrillator

J:

Joules

LEAP:

Low-energy anti-fibrillation pacing

MPT:

Multipulse therapy

ST:

Stage

VA:

Virtual anode

VC:

Virtual cathode

VEP:

Virtual electrode polarization

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

References

  1. Beck CS, Weckesser EC, Barry FM. Fatal heart attack and successful defibrillation: new concepts in coronary artery disease. JAMA. 1956;161(5):434–6.

    Article  CAS  Google Scholar 

  2. Manzoni GM, Castelnuovo G, Compare A, Pagnini F, Essebag V, Proietti R. Psychological effects of implantable cardioverter defibrillator shocks. A review of study methods. Front Psychol. 2015;6:39.

    Article  Google Scholar 

  3. Wang YT, Efimov IR, Cheng Y. Electroporation induced by internal defibrillation shock with and without recovery in intact rabbit hearts. Am J Physiol Heart Circ Physiol. 2012;303(4):H439–49.

    Article  CAS  Google Scholar 

  4. Kodama I, Shibata N, Sakuma I, Mitsui K, Iida M, Suzuki R, et al. Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am J Physiol Circ Physiol. 1994;267(1):H248–58.

    Article  CAS  Google Scholar 

  5. Al-Khadra A, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Circ Res. 2000;87(9):797–804.

    Article  CAS  Google Scholar 

  6. Jianlin X, Harry WM, Shijie S, Wanchun T, Yoji S, Xiaohua J, et al. High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation. 1997;96(2):683–8.

    Article  Google Scholar 

  7. Osswald S, Trouton TG, O’Nunain SS, Holden HB, Ruskin JN, Garan H. Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation. 1994;90(5):2501–9.

    Article  CAS  Google Scholar 

  8. Welch PJ, Joglar JA, Hamdan MH, Nelson L, Page RL. The effect of biphasic defibrillation on the immediate pacing threshold of a dedicated bipolar, steroid-eluting lead. Pacing Clin Electrophysiol. 1999;22(8):1229–33.

    Article  CAS  Google Scholar 

  9. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92(7):1954–68.8.

    Article  CAS  Google Scholar 

  10. Lown B, Perlroth MG, Kaidbey S, Abe T, Harken DE. Cardioversion of atrial fibrillation. N Engl J Med. 1963;269(7):325–31.

    Article  CAS  Google Scholar 

  11. Jain SC, Bhatnagar VM, Azami RU, Awasthey P. Elective countershock in atrial fibrillation with an intracardiac electrode--a preliminary report. J Assoc Physicians India. 1970;18(10):821–4.

    CAS  PubMed  Google Scholar 

  12. Matchett M, Sears SF, Hazelton G, Kirian K, Wilson E, Nekkanti R. The implantable cardioverter defibrillator: its history, current psychological impact and future. Expert Rev Med Devices. 2009;6(1):43–50.

    Article  Google Scholar 

  13. Powell AC, Garan H, McGovern BA, Fallon JT, Krishnan SC, Ruskin JN. Low energy conversion of atrial fibrillation in the sheep. J Am Coll Cardiol. 1992;20(3):707–11.

    Article  CAS  Google Scholar 

  14. Cooper RA, Alferness CA, Smith WM, Ideker RE. Internal cardioversion of atrial fibrillation in sheep. Circulation. 1993;87(5):1673–86.

    Article  CAS  Google Scholar 

  15. Keelan ET, Krum D, Hare J, Mughal K, Li H, Akhtar M, et al. Safety of atrial defibrillation shocks synchronized to narrow and wide QRS complexes during atrial pacing protocols simulating atrial fibrillation in dogs. Circulation. 1997;96(6):2022–30.

    Article  CAS  Google Scholar 

  16. Sokoloski MC, Ayers GM, Kumagai K, Khrestian CM, Niwano S, Waldo AL. Safety of transvenous atrial defibrillation: studies in the canine sterile pericarditis model. Circulation. 1997;96(4):1343–50.

    Article  CAS  Google Scholar 

  17. Wellens HJ, Lau CP, Lüderitz B, Akhtar M, Waldo AL, Camm AJ, et al. Atrioverter: an implantable device for the treatment of atrial fibrillation. Circulation. 1998;98(16):1651–6.

    Article  CAS  Google Scholar 

  18. Geller JC, Reek S, Timmermans C, Kayser T, Tse H-F, Wolpert C, et al. Treatment of atrial fibrillation with an implantable atrial defibrillator — long term results. Eur Heart J. 2003;24(23):2083–9.

    Article  Google Scholar 

  19. Murgatroyd FD, Slade AKB, Mark Sopher S, Rowland E, Ward DE, John Camm A. Efficacy and tolerability of transvenous low energy cardioversion of paroxysmal atrial fibrillation in humans. J Am Coll Cardiol. 1995;25(6):1347–53.

    Article  CAS  Google Scholar 

  20. Beck CS, Pritchard WH, Feil HS. Ventricular fibrillation of long duration abolished by electric shock. JAMA. 1947;135(15):985–6.

    Article  CAS  Google Scholar 

  21. Sweeney RJ, Gill RM, Steinberg MI, Reid PR. Ventricular refractory period extension caused by defibrillation shocks. Circulation. 1990;82(3):965–72.

    Article  CAS  Google Scholar 

  22. Zipes DP, Fischer J, King RM, Nicoll A deB, Jolly WW. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol. 1975;36(1):37–44.

    Article  CAS  Google Scholar 

  23. Chen PS, Feld GK, Kriett JM, Mower MM, Tarazi RY, Fleck RP, et al. Relation between upper limit of vulnerability and defibrillation threshold in humans. Circulation. 1993;88(1):186–92.

    Article  CAS  Google Scholar 

  24. Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol. 1998;9(5):529–52.

    Article  CAS  Google Scholar 

  25. Efimov IR, Cheng YN, Biermann M, Van Wagoner DR, Mazgalev TN, Tchou PJ. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol. 1997;8(9):1031–45.

    Article  CAS  Google Scholar 

  26. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res. 1999;85(11):1056–66.

    Article  CAS  Google Scholar 

  27. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res. 1998;82(8):918–25.

    Article  CAS  Google Scholar 

  28. Ripplinger CM, Krinsky VI, Nikolski VP, Efimov IR. Mechanisms of unpinning and termination of ventricular tachycardia. Am J Physiol Circ Physiol. 2006;291(1):H184–92.

    Article  CAS  Google Scholar 

  29. Takagi S, Pumir A, Pazó D, Efimov I, Nikolski V, Krinsky V. Unpinning and removal of a rotating wave in cardiac muscle. Phys Rev Lett. 2004;93(5):58101.

    Article  CAS  Google Scholar 

  30. Li W, Ripplinger CM, Lou Q, Efimov IR. Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm. 2009;6(7):1020–7.

    Article  Google Scholar 

  31. Li W, Janardhan AH, Fedorov VV, Sha Q, Schuessler RB, Efimov IR. Low-energy multistage atrial defibrillation therapy terminates atrial fibrillation with less energy than a single shock. Circ Arrhythm Electrophysiol. 2011;4(6):917–25.

    Article  Google Scholar 

  32. Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, et al. Low-energy control of electrical turbulence in the heart. Nature. 2011;475(7355):235–9.

    Article  CAS  Google Scholar 

  33. Janardhan AH, Gutbrod SR, Li W, Lang D, Schuessler RB, Efimov IR. Multistage electrotherapy delivered through chronically-implanted leads terminates atrial fibrillation with lower energy than a single biphasic shock. J Am Coll Cardiol. 2014;63(1):40–8.

    Article  Google Scholar 

  34. Varghese F, Neuber JU, Xie F, Philpott JM, Pakhomov AG, Zemlin CW. Low-energy defibrillation with nanosecond electric shocks. Cardiovasc Res. 2017;113(14):1789–97.

    Article  CAS  Google Scholar 

  35. Ng FS, Toman O, Petru J, Winkle RA, Reddy VY, Mead H, et al. Painless atrial cardioversion using low-energy multistage electrotherapy: first-in-man feasibility trial (Abstract). Heart Rhythm. 2019;14(Supplement 5):S103–4.

    Google Scholar 

  36. Efimov I, Ripplinger CM. Virtual electrode hypothesis of defibrillation. Heart Rhythm. 2006;3(9):1100–2.

    Article  Google Scholar 

  37. Gray RA, Wikswo JP. Cardiovascular disease: several small shocks beat one big one. Nature. 2011;475(7355):181–2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Siong Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Handa, B.S., Ng, F.S. (2021). Multistage Defibrillation Therapy. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics