Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 332))

Abstract

Internet of Drones (IoD) is a major role for the  central military, agriculture and  IoT applications that requires critical information to be processed. It ensures that security and network privacy issues in the Internet of Drones (IoD) have  malware/vulnerable attacks and Distributed Denial of Service (DDoS) attacks are highly energy-constrained, which are a direct standard of cryptography protocols and secured key IoD algorithms. IoD is a capable of enhanced state-of-the-art of  Drones while providing services from an existing cellular networks. IoD is vulnerable to malicious attacks over radio waves frequency space due to the increasing number of attacks and threats to a wide range of  security measures for IoD networks. Low cost of Unmanned Aerial Vehicles (UAV) known as Drones for enabling various IoT applications. UAV are also used in several applications in surveillance, disaster, environment and management search and rescue monitoring solutions that are limited to point-to-point communication patterns, and are not suitable for distributed applications in multi-UAV scenarios. UAV has limited processing and storage capabilities with massive computations requirements for certain applications. In this book chapter, we represent the Drone-map planner that are service-oriented fog-based drone management system that controls, monitors and communicates with Drones over the network. Drone-map planner that allows to communicate with multiple Drones over the internet, which are enables to control anywhere and anytime without any long distance restrictions. Drone-Map planner provides access to fog computing resources for drones to heavy load computations. To classify the attacks based on the threats and vulnerabilities associated with the networking of drone and their incorporation into the existing cellular setups. This chapter of book summarizes the challenges and research directions to be followed for the security of IoD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Philip, K., Nagi, M.: A framework for sensing radio frequency spectrum attacks on medical delivery drones. IEEE Access (2020). https://www.researchgate.net/publication/341148312

  2. Schmidt, E., Akopian, D., Pack, D.J.: Development of a real-time software-defined GPS receiver in a LabVIEW-based instrumentation environment. IEEE Trans. Instrum. Meas. 67(9), 2082–2096 (2018). https://doi.org/10.1109/TIM.2018.2811446

    Article  Google Scholar 

  3. Shvetsova, S.V., Alexey, V.: Safety analysis of goods transportation by unmanned aerial vehicles. World Transp. Transp. 17(5), 286–297 (2020). https://doi.org/10.30932/1992-3252-2019-17-5-286-297

    Article  Google Scholar 

  4. Sciancalepore, S., Ibrahim, O., Oligeri, G., Pietro, R.D.: Picking a needle in a Haystack: detecting drones via network traffic analysis. arXiv: 1901.03535v1 [cs.CR] (2019). https://www.researchgate.net/publication/33035767

  5. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Usmani, R.S.A., Nayyar, A.: Smart traffic monitoring system using unmanned aerial vehicles (UAVs). Comput. Commun. (2020)

    Google Scholar 

  6. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Nayyar, A.: Emerging Use of UAV’s: Secure Communication Protocol Issues and Challenges. Elsevier (2020)

    Google Scholar 

  7. Guntur, S.R., Gorrepati, R.R., Dirisala, V.R.: Internet of medical things remote healthcare and health monitoring perspective. Medical Big Data and Internet of Medical Things: Advances, Challenges, and Applications, chap. 11. CRC Press Taylor & Francis Group, Boca Raton (2018)

    Google Scholar 

  8. Guntur, S.R., Gorrepati, R.R., Dirisala, V.R.: Robotics in healthcare: an Internet of Medical Robotic Things (IoMRT) perspective. Machine Learning in Biosignal Analysis and Diagnosis Imaging, chap. 12. Elsevier, Amsterdam (2019)

    Google Scholar 

  9. Nayyar, A., Bao-Le, N., Nguyen, N.G.: The Internet of Drone Things (IoDT): future envision of smart drones. In: First International Conference on Sustainable Technologies for Computational Intelligence. Advances in Intelligent Systems. Springer (2020). https://doi.org/10.1007/978-981-15-0029-9_45

  10. Caparra, G., Ceccato, S., Formaggio, F., Laurenti, N., Tomasin, S.: Low power selective denial of service attacks against GNSS. In: Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS + 2018). Institute of Navigation (2018). https://doi.org/10.33012/2018.15909

  11. Wang, Q., Nguyen, T., Khanh, P., Kwon, H.: Mitigating jamming attack: a game-theoretic perspective. IEEE Trans. Veh. Technol. 67(7), 6063–6074 (2018)

    Article  Google Scholar 

  12. Jameel, F., Wyne, S., Kaddoum, G., Duong, T.Q.: A comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Commun. Surv. Tutor. 21, 2734–2771 (2018)

    Google Scholar 

  13. Perez Marcos, E., Caizzone, S., Konovaltsev, A., Cuntz, M., Elmarissi, W., Yinusa, K., Meurer, M.: Interference awareness and characterization for GNSS maritime applications. In: 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 908–919 (2018)

    Google Scholar 

  14. Shi, X., Yang, C., Weige, X., Chen, J.: Anti-drone system with multiple surveillance technologies: architecture, implementation, and challenges. IEEE Commun. Mag. (2018). https://doi.org/10.1109/MCOM.2018.1700430

    Article  Google Scholar 

  15. Son, Y., Noh, J., Choi, J., Kim, Y.: Gyrosfinger: fingerprinting drones for location tracking based on the outputs of MEMS gyroscopes. ACM Trans. Priv. Secur. 21(2), 10:1–10:25 (2018)

    Google Scholar 

  16. Sanjab, A., Saad, W., Baskar, T.: Prospect theory for enhanced cyber-physical security of drone delivery systems: a network interdiction game. arXiv preprint arXiv:1702.04240 (2018)

  17. Khan, M.A., Alvi, B.A., Safi, E.A., Khan, I.U.: Drones for good in smart cities: a review. In: International Conference on Electrical, Electronics, Computers, Communication, Mechanical and Computing (EECCMC) 28 & 29 Jan 2018. https://www.researchgate.net/publication/31684633

  18. Mabodi, K., Mehadi, Y., Zandiyan, S.: Multi-level trust-based intelligence schema for securing of the internet of things (IoT) against security threats using cryptographic authentication. J. Supercomput. (2020). https://doi.org/10.1007/s11227-019-03137-5

    Article  Google Scholar 

  19. Fotohi, R.: Securing of unmanned aerial systems (UAS) against security threats using the human immune system. Reliab. Eng. Syst. Saf. 193, 106675 (2020)

    Article  Google Scholar 

  20. Qin, T., Wang, B., Chen, R., Qin, Z.: Wang L IMLADS: intelligent maintenance and lightweight anomaly detection system for internet of things. Sensors 19(4), 958 (2019)

    Article  Google Scholar 

  21. Zhang, J., Rajendran, S., Sun, Z., Woods, R., Hanzo, L.: Physical layer security for the internet of things: authentication and key generation. IEEE Wirel. Commun. 26(5), 92–98 (2019). https://doi.org/10.1109/mwc.2019.1800455

  22. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017 (2017)

    Google Scholar 

  23. Fotouhi, A., Ding, M., Hassan, M.: Understanding autonomous drone maneuverability for the internet of things applications. In: 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6 (2017)

    Google Scholar 

  24. Motlagh, N.H., Bagaa, M., Taleb, T.: UAV-based IoT platform: a crowd surveillance use case. IEEE Commun. Mag. 55, 128–134 (2017)

    Article  Google Scholar 

  25. Kersnovski, T., Gonzalez, F., Morton, K.: A UAV system for autonomous target detection and gas sensing. In: Proceedings of the Aerospace Conference, Big Sky, MT, USA, pp. 1–12 (2017)

    Google Scholar 

  26. Kumbhar, A., Guvenc, I., Singh, S., Tuncer, A.: Exploiting LTE-advanced HetNets and FeICIC for UAV-assisted public safety communications. IEEE Access 6, 783–796 (2018)

    Article  Google Scholar 

  27. Butun, I., Österberg, P., Song, H.: Security of the internet of things: vulnerabilities, attacks, and countermeasures. IEEE Commun. Surv. Tutor. (2019). https://doi.org/10.1109/COMST.2019.2953364

    Article  Google Scholar 

  28. Eldosouky, A., Ferdowsi, A., Saad, W.: Drones in distress: a game-theoretic countermeasure for protecting UAVs against GPS spoofing. arXiv:1904.11568v1 [cs.SY] 16 (2019). https://www.researchgate.net/publication/332726565

  29. Jansen, K., Schafer, M., Moser, D., Lenders, V., Popper, C., Schmitt, J.: Crowd-GPS-Sec: leveraging crowdsourcing to detect and localize GPS spoofing attacks. In: IEEE Symposium on Security and Privacy (SP), San Francisco, CA, pp. 1018–1031 (2018)

    Google Scholar 

  30. French, A., Mohammad, M., Eldosouky, A., Saad, W.: Environment-Aware Deployment of Wireless Drones Base Stations with Google Earth Simulator (2018). https://www.researchgate.net/publication/325414049

  31. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., Debbah, M.: A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems (2018)

    Google Scholar 

  32. Mozaffari, M., Kasgari, A.T.Z., Saad, W., Bennis, M., Debbah, M.: Beyond 5G with UAVs: foundations of a 3D wireless cellular network. IEEE Trans. Wirel. Commun. 18(1), 357–372 (2019)

    Article  Google Scholar 

  33. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Wireless communication using unmanned aerial vehicles (UAVs): optimal transport theory for hover time optimization. IEEE Trans. Wirel. Commun. 16(12), 8052–8066 (2017)

    Article  Google Scholar 

  34. Zhang, A., Liu, X., Gros, A., Tiecke, T.: Building detection from satellite images on a global scale (2017)

    Google Scholar 

  35. Granjal, J., Monteiro, E., Silva, J.S.: Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17, 1294–1312 (2015)

    Article  Google Scholar 

  36. Caparra, G., Ceccato, S., Formaggio, F., Laurenti, N., Tomasin, S.: Low power selective denial of service attacks against GNSS. In: Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS + 2018). Institute of Navigation (2018)

    Google Scholar 

  37. Pietro, R., Oligeri, G., Tedeschi, P.: JAM-ME: exploiting jamming to accomplish drone mission. In: IEEE Conference on Communications and Network Security (CNS) (2019)

    Google Scholar 

  38. Tedeschi, P., Oligeri, G., Pietro, R.: Leveraging jamming to help drones complete their mission. IEEE Access 4, 1–16 (2016)

    Google Scholar 

  39. Zhang, Q., Mohammad, M., Saad, W.: Machine Learning for Predictive On-Demand Deployment of UAVs for Wireless Communications. arXiv:1805.00061v1 [eess.SP] (2018)

  40. Mohammad, M.: Performance optimization for UAV-enabled wireless communications under flight time constraints. In: IEEE Global Communications Conference (GLOBECOM) (2018)

    Google Scholar 

  41. Zeng, Y., Zhang, R.: Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel. Commun. 16(6), 3747–3760 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitaramanjaneya Reddy Guntur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gorrepati, R.R., Guntur, S.R. (2021). DroneMap: An IoT Network Security in Internet of Drones. In: Krishnamurthi, R., Nayyar, A., Hassanien, A.E. (eds) Development and Future of Internet of Drones (IoD): Insights, Trends and Road Ahead. Studies in Systems, Decision and Control, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-030-63339-4_10

Download citation

Publish with us

Policies and ethics