Skip to main content

Magnetization Dynamics

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Magnetism primarily describes the physics and materials science of systems presenting a magnetization – a macroscopic order parameter characterizing electron angular momentum. The order parameter is associated with the electronic exchange interactions, which are fundamentally quantum mechanical. Its dynamic behavior bridges the macroscopic and the microscopic worlds. On macroscopic length and time scales, it interacts with electromagnetic fields dictated by Maxwell’s equations. On a microscopic scale, it involves the quantum-mechanical electronic states both in spin space and momentum space, thus giving rise to a wide range of behaviors that extend down to femtoseconds. Thanks to the development of modern metrology, there have been many new and noteworthy observations of magnetism-related phenomena across the entire range – from spin-torque-induced anti-damping dynamics to ultrafast laser-induced femtosecond electron dynamics that involve spin current and angular momentum conservation. In this review, we introduce some observations on magnetodynamics and the scientific subjects these new results give rise to.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lifshitz, E.M., Pitaevskii, L.P.: Magnetism, Chapter 7. In: Statistical Physics, Part 2, A. Wheaton & Co. Ltd., Exter II, 285 (1981). http://www.fulviofrisone.com/attachments/article/208/Landau%20L.D.%20&%20Lifschitz%20E.M.-%20Vol.%209%20-%20Statistical%20Physics%20part%202.pdf

  2. Kittel, C.: Ferromagnetism and antiferromagnetism, Chapter 15. In: Introduction to Solid State Physics, 6th edn., p 434. Wiley (1986)

    Google Scholar 

  3. Dennis, C.L., Borges, R.P., Buda, L.D., Ebels, U., Gregg, J.F., Hehn, M., Jouguelet, E., Ounadjela, K., Petej, I., Prejbeanu, I.L., Thornton, M.J.: The defining length scales of mesomagnetism: a review. J. Phys. Condens. Matter 14, R1175 (2002)

    Article  ADS  Google Scholar 

  4. Ellis, M.O.A., Evans, R.F.L., Ostler, T.A., Barker, J., Atxitia, U., Chubykalo-Fesenko, O., Chantrell, R.W.: The Landau-Lifshitz equation in atomistic models. Low Temp. Phys. 41, 705 (2015)

    Article  ADS  Google Scholar 

  5. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mat. 159, L1 (1996)

    Article  ADS  Google Scholar 

  6. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  7. Slonczewski, J.C.: Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995 (1989)

    Article  ADS  Google Scholar 

  8. Sun, J.Z.: Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157 (1999)

    Article  ADS  Google Scholar 

  9. Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., Ralph, D.C.: Current-driven magnetization reversal and spin-wave excitation in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000)

    Article  ADS  Google Scholar 

  10. Sun, J.Z.: Spin-current interaction with a monodomain magnetic body, a model study. Phys. Rev. B 62, 570 (2000)

    Article  ADS  Google Scholar 

  11. Slonczewski, J.C.: Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261 (1999)

    Article  ADS  Google Scholar 

  12. Bazaliy, Y.B., Jones, B.A., Zhang, S.-C.: Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Phys. Rev. B 57, R3213 (1998)

    Article  ADS  Google Scholar 

  13. Herring, C., Kittel, C.: On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869 (1951)

    Article  MATH  ADS  Google Scholar 

  14. Valet, T., Fert, A.: Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099 (1993)

    Article  ADS  Google Scholar 

  15. Brataas, A., Nazarov, Y.V., Bauer, G.E.W.: Finite-element theory of transport in ferromagnet-normal metal systems. Phys. Rev. Lett. 84, 2481 (2000)

    Article  ADS  Google Scholar 

  16. Huai, Y., Albert, F., Nguyen, P., Pakala, M., Valet, T.: Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118 (2004)

    Article  ADS  Google Scholar 

  17. Slonczewski, J.C.: Currents, torques and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005)

    Article  ADS  Google Scholar 

  18. Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999)

    Article  ADS  Google Scholar 

  19. Zhang, S.: Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393 (2000)

    Article  ADS  Google Scholar 

  20. Kimura, T., Otani, Y., Sato, T., Takahashi, S., Maekawa, S.: Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007)

    Article  ADS  Google Scholar 

  21. Liu, L., Pai, C.-F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin torque switching with the giant spin hall effect of tantalum. Science 336, 555 (2012)

    Article  ADS  Google Scholar 

  22. Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D.: Observation of the spin Hall effect in semiconductors. Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  23. Kajiwara, Y., Harii, K., Takahashi, S., Ohe, J., Uchida, K., Uchida, M., Mizuguchi, M., Umezawa, H., Kawai, H., Ando, K., Takanashi, K., Maekawa, S., Saitoh, E.: Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010)

    Article  ADS  Google Scholar 

  24. Hasan, M.Z., Kane, C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  25. Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  26. Yan, B., Zhang, S.-C.: Topological materials. Rep. Prog. Phys. 75, 096501 (2012)

    Article  ADS  Google Scholar 

  27. Slonczewski, J.C.: Initiation of spin-transfer torque by thermal transport from magnons. Phys. Rev. B 82, 054403 (2010)

    Article  ADS  Google Scholar 

  28. Nakata, K., Simon, P., Loss, D.: Wiedemann-Franz law for magnon transport. Phys. Rev. B 92, 134425 (2015)

    Article  ADS  Google Scholar 

  29. Bauer, G.E.W., Saitoh, E., van Wees, B.J.: Spin caloritronics. Nat. Mater. 11, 391 (2012)

    Article  ADS  Google Scholar 

  30. Kiselev, S.I., Sankey, J.C., Krivorotov, L.N., Emley, N.C., Schoelkopf, R.J., Buhrman, R.A., Ralph, D.C.: Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003)

    Article  ADS  Google Scholar 

  31. Slonczewski, J.C.: The physics of spin-transfer in layered metallic magnets. EPFL Latsis Symposium 02 extended abstract (2002)

    Google Scholar 

  32. Slonczewski, J.C.: Theory of spin-polarized current and spin-transfer torque in magnetic multilayers. In: Kronmúller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials. Spintronics and Magnetoelectronics, vol. 5. Wiley (2007). https://www.wiley.com/en-us/Handbook+of+Magnetism+and+Advanced+Magnetic+Materials%2C+5+Volume+Set-p-9780470022177

  33. Sun, J.Z.: Physical principles of spin torque. In: Handbook of Spintronics. Springer Scientific and Business Media, Dordrecht (2014). https://doi.org/10.1007/978-94-0077604-3-47-1

  34. Liu, H., Bedau, D., Sun, J.Z., Mangin, S., Fullerton, E.E., Katine, J.A., Kent, A.D.: Dynamics of spin torque switching in all-perpendicular spin-valve nanopillars. J. Magn. Magn. Mater. 358–359, 233 (2014)

    Article  ADS  Google Scholar 

  35. Liu, H., Bedau, D., Sun, J.Z., Mangin, S., Fullerton, E.E., Katine, J.A., Kent, A.D.: Time-resolved magnetic relaxation of a nanomagnet on subnanosecond time scales. Phys. Rev. B 85, 220405(R) (2012)

    Google Scholar 

  36. Sun, J.Z.: Write-efficiency and read-disturbance in a spin-torque switched nanomagnet. IBM Internal Memo (2006)

    Google Scholar 

  37. He, J., Sun, J.Z., Zhang, S.: Switching speed distribution of spin-torque-induced magnetic reversal. J. Appl. Phys. 101, 09A501 (2007)

    Google Scholar 

  38. Butler, W.H., Mewes, T., Mewes, C.K.A., Visscher, P.B., Rippard, W.H., Russek, S.E., Heindl, R.: Switching distributions for perpendicular spin-torque devices within the macrospin approximation. IEEE Trans. Magn. 48, 4684 (2012)

    Article  ADS  Google Scholar 

  39. Coffey, W.T., Crothers, D.S.F., Dormann, J.L., Geoghegan, L.J., Kalmykov, Y.P., Waldron, J.T., Wickstead, A.W.: Effect of an oblique magnetic field on the superparamagnetic relaxation time. Phys. Rev. B 52, 15951 (1995)

    Article  ADS  Google Scholar 

  40. Pinna, D., Kent, A.D., Stein, D.L.: Thermally assisted spin-transfer torque dynamics in energy space. Phys. Rev. B 88, 104405 (2013)

    Article  ADS  Google Scholar 

  41. Taniguchi, T., Imamura, H.: Thermally assisted spin transfer torque switching in synthetic free layers. Phys. Rev. B 83, 054432 (2011)

    Article  ADS  Google Scholar 

  42. Thomas, L., Jan, G., Le, S., Wang, P.-K.: Quantifying data retention of perpendicular spin-transfer-torque magnetic random access memory chips using an effective thermal stability factor method. Appl. Phys. Lett. 106, 162402 (2015)

    Article  ADS  Google Scholar 

  43. Hirayama, E., Sato, H., Kanai, S., Matsukura, F., Ohno, H.: Magnetic field and current magnetization reversal in elliptic CoFeB/MgO magnetic tunnel junctions with perpendicular magnetic easy axis. IEEE Magn. Lett. 7, 3104004 (2016)

    Article  Google Scholar 

  44. Sun, J.Z., Robertazzi, R.P., Nowak, J., Trouilloud, P.L., Hu, G., Abraham, D.W., Gaidis, M.C., Brown, S.L., O’Sullivan, E.J., Gallagher, W.J., Worledge, D.C.: Effect of subvolume excitation and spin-torque efficiency on magnetic switching. Phys. Rev. B 84, 064413 (2011)

    Article  ADS  Google Scholar 

  45. Sun, J.Z., Trouilloud, P.L., Gajek, M.J., Nowak, J., Robertazzi, R.P., Hu, G., Abraham, D.W., Gaidis, M.C., Brown, S.L., O’Sullivan, E.J., Gallagher, W.J., Worledge, D.C.: Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions. J. Appl. Phys. 111, 07C711 (2012)

    Google Scholar 

  46. Sun, J.Z., Brown, S.L., Chen, W., Delenia, E.A., Gaidis, M.C., Harms, J., Hu, G., Jiang, X., Kilaru, R., Kula, W., Lauer, G., Liu, L.Q., Murthy, S., Nowak, J., O’Sullivan, E.J., Parkin, S.S.P., Robertazzi, R.P., Rice, P.M., Sandhu, G., Topuria, T., Worledge, D.C.: Spin-torque switching efficiency in CoFeB-MgO based tunnel junctions. Phys. Rev. B 88, 104426 (2013)

    Article  ADS  Google Scholar 

  47. Apalkov, D.M., Visscher, P.B.: Spin-torque switching: Fokker-Planck rate calculation. Phys. Rev. B 72, 180405 (2005)

    Article  ADS  Google Scholar 

  48. Parkin, S.S.P., Kaiser, C., Panchula, A., RiceandBrian Hughes, P.M., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnelbarriers. Nat. Mater. 3, 862 (2004)

    Article  ADS  Google Scholar 

  49. Yuasa, S., Nagahama, T., Fukushima, A., Suzukiand Koji Ando, Y.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004)

    Google Scholar 

  50. Butler, W.H., Zhang, X.-G., Schulthess, T.C., MacLaren, J.M.: Spin-dependent tunneling conductance of Fe∣MgO∣Fe sandwiches. Phys. Rev. B 63, 054416 (2001)

    Article  ADS  Google Scholar 

  51. Zhang, X.-G., Butler, W.H.: Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions. Phys. Rev. B 70, 172407 (2004)

    Article  ADS  Google Scholar 

  52. Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., Ohno, H.: A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721 (2010)

    Article  ADS  Google Scholar 

  53. Worledge, D.C., Hu, G., Abraham, D.W., Sun, J.Z., Trouilloud, P.L., Nowak, J., Brown, S., Gaidis, M.C., O’Sullivan, E.J., Robertazzi, R.P.: Spin torque switching of perpendicular Ta—CoFeB—MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011)

    Article  ADS  Google Scholar 

  54. Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawaand, H., Tsunoda, M., Matsukura, F., Ohno, H.: Tunnel magnetoresistance of 604% at 300 K by supression of Ta diffusion inCoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008)

    Article  ADS  Google Scholar 

  55. Nowak, J.J., Robertazzi, R.P., Sun, J.Z., Hu, G., Park, J.H., Lee, J.H., Annunziata, A.J., Lauer, G.P., Kothandaraman, C., O’Sullivan, E.J., Trouilloud, P.L., Kim, Y., Worledge, D.C.: Voltage and size dependence on write-error-rates in STT MRAM down to 11nm junction size. IEEE Magn. Lett. 7, 3102604 (2016)

    Google Scholar 

  56. Watanabe, K., Jinnai, B., Fukami, S., Sato, H., Ohno, H.: Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions. Nat. Commun. 9, 663 (2018)

    Article  ADS  Google Scholar 

  57. Hayakawa, J., Ikeda, S., Lee, Y.M., Sasaki, R., Meguro, T., Matsukura, F., Takahashi, H., Ohno, H.: Current-driven magnetization switching in CoFeB/MgO/CoFeB magnetic tunneljunctions. Jpn. J. Appl. Phys. 44, 1267 (2005)

    Article  ADS  Google Scholar 

  58. Sun, J.Z., Chen, L., Suzuki, Y., Parkin, S.S.P., Koch, R.H.: Thermally activated sweep-rate dependence of magnetic switching field in nanostructured current-perpendicular spin-valves. J. Magn. Magn. Mater. 247, L237 (2002)

    Article  ADS  Google Scholar 

  59. Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K., Yamada, H., Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H.: A novel nonvolatile memory with spin torque transfer magnetization switching: Spin-RAM. In: IEEE. IEDM 2005. IEEE 0-7803-9269-8/05 (2005)

    Google Scholar 

  60. Koch, R.H., Katine, J.A., Sun, J.Z.: Time-resolved reversal of spin-transfer switching in a nanomagnet. Phys. Rev. Lett. 92, 088302 (2004)

    Article  ADS  Google Scholar 

  61. Sun, J.Z., Kuan, T.S., Katine, J.A., Koch, R.H.: Spin angular momentum transfer in a current-perpendicular spin-valve nanomagnet. Proc. SPIE 5359, 445 (2004)

    Article  ADS  Google Scholar 

  62. Tulapurkar, A.A., Devolder, T., Yagami, K., Crozat, P., Chappert, C., Fukushima, A., Suzuki, Y.: Subnanosecond magnetization reversal in magnetic nanopillars by spin angular momentum transfer. Appl. Phys. Lett. 85, 5358 (2005)

    Article  ADS  Google Scholar 

  63. Bedau, D., Liu, H., Bouzaglou, J.J., Sun, J.Z., Katine, J.A., Mangin, S., Kent, A.D.: Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy. Appl. Phys. Lett. 96(2), 022514 (2010)

    Article  ADS  Google Scholar 

  64. Bedau, D.B., Liu, H., Sun, J.Z., Katine, J.A., Mangin, S., Kent, A.D.: Spin-transfer pulse switching: from the dynamic to the thermally activated regime. Appl. Phys. Lett. 97(26), 262502 (2010)

    Article  ADS  Google Scholar 

  65. Sun, J.Z., Gaidis, M.C., O’Sullivan, E.J., Joseph, E.A., Hu, G., Abraham, D.W., Nowak, J.J., Trouilloud, P.L., Lu, Y., Brown, S.L., Worledge, D.C., Gallagher, W.J.: A three-terminal spin-torque-driven magnetic switch. Appl. Phys. Lett. 95, 083506 (2009)

    Article  ADS  Google Scholar 

  66. Zhang, C., Fukami, S., Sato, H., Matsukura, F., Ohno, H.: Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO. Appl. Phys. Lett. 107, 012401 (2015)

    Article  ADS  Google Scholar 

  67. Fukami, S., Anekawa, T., Ohkawara, A., Zhang, C., Ohno, H.: A sub-ns three-terminal spin-orbit torque induced switching device. 2016 Symposium on VLSI Technology, Paper 16-5 (2016)

    Google Scholar 

  68. Chaves-O’Flynn, G.D., Vanden-Eijnden, E., Stein, D.L., Kent, A.D.: Thermal stability of the magnetization in perpendicularly magnetized thin film nanomagnets. J. Appl. Phys. 113, 023912 (2013)

    Article  ADS  Google Scholar 

  69. Chaves-O’Flynn, G.D., Wolf, G., Sun, J.Z., Kent, A.D.: Thermal stability of magnetic states in circular thin-film nanomagnets with large perpendicular magnetic anisotropy. Phys. Rev. Appl. 4, 024010 (2015)

    Article  ADS  Google Scholar 

  70. Sun, J.Z.: Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory. SPIE Conf. 9931, 37 (2016)

    Google Scholar 

  71. Nowak, J.J., Robertazzi, R.P., Sun, J.Z., Hu, G., Abraham, D.W., Trouilloud, P.L., Brown, S., Gaidis, M.C., O’Sullivan, E.J., Gallagher, W.J., Worledge, D.C.: Demonstration of ultralow bit error rates for spin-torque magnetic random-access memory with perpendicular magnetic anisotropy. IEEE Magn. Lett. 2, 3000204 (2011)

    Article  Google Scholar 

  72. Kent, A.D., Worledge, D.C.: A new spin on magnetic memories. Nat. Nanotechnol. 10(3), 187–191 (2015)

    Article  ADS  Google Scholar 

  73. Kent, A.D., Özyilmaz, B., del Barco, E.: Spin-transfer-induced precessional magnetization reversal. Appl. Phys. Lett. 84, 3897 (2004)

    Article  ADS  Google Scholar 

  74. Liu, L., Lee, O.J., Gudmundsen, T.J., Ralph, D.C., Buhrman, R.A.: Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012)

    Article  ADS  Google Scholar 

  75. Avci, C.O., Garello, K., Nistor, C., Godey, S., Ballesteros, B., Mugarza, A., Barla, A., Valvidares, M., Pellegrin, E., Ghosh, A., Miron, I.M., Boulle, O., Auffret, S., Gaudin, G., Gambardella, P.: Field-like and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers. Phys. Rev. B 89, 214419 (2014)

    Article  ADS  Google Scholar 

  76. Miron, I.M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., Gambardella, P.: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230 (2010)

    Article  ADS  Google Scholar 

  77. Avci, C.O., Garello, K., Miron, I.M., Gaudin, G., Auffret, S., Boulle, O., Gambardella, P.: Magnetization switching of an MgO/Co/Pt layer by in-plane current injection. Appl. Phys. Lett. 100, 212404 (2012)

    Article  ADS  Google Scholar 

  78. Lee, O.J., Liu, L.Q., Pai, C.F., Li, Y., Tseng, H.W., Gowtham, P.G., Park, J.P., Ralph, D.C., Buhrman, R.A.: Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014)

    Article  ADS  Google Scholar 

  79. Garello, K., Avci, C.O., Miron, I.M., Baumgartner, M., Ghosh, A., Auffret, S., Boulle, O., Gaudin, G., Gambardella, P.: Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014)

    Article  ADS  Google Scholar 

  80. Cubukcu, M., Boulle, O., Drouard, M., Garello, K., Avci, C.O., Miron, I.M., Langer, J., Ocker, B., Gambardella, P.: Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014)

    Article  ADS  Google Scholar 

  81. Pinna, D., Stein, D.L., Kent, A.D.: Spin-torque oscillators with thermal noise: a constant energy orbit approach. Phys. Rev. B 90, 174405 (2014)

    Article  ADS  Google Scholar 

  82. Pinna, D., Kent, A.D., Stein, D.L.: Thermally assisted spin-transfer torque dynamics in energy space. Phys. Rev. B 88, 104405 (2013)

    Article  ADS  Google Scholar 

  83. Liu, H., Bedau, D., Backes, D., Katine, J.A., Langer, J., Kent, A.D.: Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97(24), 242510 (2010)

    Article  ADS  Google Scholar 

  84. Rowlands, G.E., Rahman, T., Katine, J.A., Langer, J., Lyle, A., Zhao, H., Alzate, J.G., Kovalev, A.A., Tserkovnyak, Y., Zeng, Z.M., Jiang, H.W., Galatsis, K., Huai, Y.M., Khalili Amiri, P., Wang, K.L., Krivorotov, I.N., Wang, J.-P.: Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers. Appl. Phys. Lett. 98(10), 102509 (2011)

    Article  ADS  Google Scholar 

  85. Lee, O.J., Pribiag, V.S., Braganca, P.M., Gowtham, P.G., Ralph, D.C., Buhrman, R.A.: Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin current pulse. Appl. Phys. Lett. 95(1), 012506 (2009)

    Article  ADS  Google Scholar 

  86. Beaujour, J.M.L., Bedau, D.B., Liu, H., Rogosky, M.R., Kent, A.D.: Spin-transfer in nanopillars with a perpendicularly magnetized spin polarizer. Proc. SPIE – Int. Soc. Opt. Eng. 7398, 73980D (2009)

    Google Scholar 

  87. Papusoi, C., Delat́, B., Rodmacq, B., Houssameddine, D., Michel, J.-P., Ebels, U., Sousa, R.C., Buda-Prejbeanu, L., Dieny, B.: 100 ps precessional spin-transfer switching of a planar magnetic random access memory cell with perpendicular spin polarizer. Appl. Phys. Lett. 95, 072506 (2009)

    Google Scholar 

  88. Park, J., Ralph, D.C., Buhrman, R.A.: Fast deterministic switching in orthogonal spin torque devices via the control of the relative spin polarizations. Appl. Phys. Lett. 103(25), 252406 (2013)

    Article  ADS  Google Scholar 

  89. Rowlands, G.E., Ryan, C.A., Ye, L., Rehm, L., Pinna, D., Kent, A.D., Ohki, T.A.: A cryogenic spin-torque memory element with precessional magnetization dynamics. Sci. Rep. 9, 803 (2019)

    Article  ADS  Google Scholar 

  90. Pinna, D., Ryan, C.A., Ohki, T., Kent, A.D.: Reliable spin-transfer torque driven precessional magnetization reversal with an adiabatically decaying pulse. Phys. Rev. B 93, 184412 (2016)

    Article  ADS  Google Scholar 

  91. Houssameddine, D., Ebels, U., Dela et, B., Rodmacq, B., Firastrau, I., Ponthenier, F., Brunet, M., Thirion, C., Michel, J.-P., Prejbeanu buda, L., Cyrille, M.C., Redon, O., Dieny, B.: Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat. Mater. 6, 447 (2007)

    Google Scholar 

  92. Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P.: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998)

    Article  ADS  Google Scholar 

  93. Rippard, W.H., Pufall, M.R., Silva, T.J.: Quantitative studies of spin-momentum-transfer-induced excitation in Co/Cu multilayer films using point-contact spectroscopy. Appl. Phys. Lett. 82, 1260 (2003)

    Article  ADS  Google Scholar 

  94. Rippard, W.H., Pufall, M.R., Kaka, S., Russek, S.E., Silva, T.J.: Direct-current induced dynamics in Co90Fe10/Ni80Fe20pointcontacts. Phys. Rev. Lett. 92, 027201 (2004)

    Article  ADS  Google Scholar 

  95. Pufall, M.R., Rippard, W.H., Kaka, S., Silva, T.J., Russek, S.E.: Frequency modulation of spin-transfer oscillators. Appl. Phys. Lett. 86, 082506 (2005)

    Article  ADS  Google Scholar 

  96. Rippard, W.H., Pufall, M.R., Kaka, S., Silva, T.J., Russek, S.E., Katine, J.A.: Injection locking and phase control of spin transfer nano-oscillators. Phys. Rev. Lett. 95, 067203 (2005)

    Article  ADS  Google Scholar 

  97. Slonczewski, J.C.: Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195(2), L261–L268 (1999)

    Article  ADS  Google Scholar 

  98. Slavin, A., Tiberkevich, V.: Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95(23), 237201 (2005)

    Article  ADS  Google Scholar 

  99. Hoefer, M.A., Ablowitz, M.J., Ilan, B., Pufall, M.R., Silva, T.J.: Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. Phys. Rev. Lett. 95, 267206 (2005)

    Article  ADS  Google Scholar 

  100. Hoefer, M., Silva, T., Stiles, M.: Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact. Phys. Rev. B 77(14), 144401 (2008)

    Article  ADS  Google Scholar 

  101. Bonetti, S., Tiberkevich, V., Consolo, G., Finocchio, G. Muduli, P., Mancoff, F., Slavin, A., Åkerman, J.: Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010)

    Article  ADS  Google Scholar 

  102. Demidov, V.E., Urazhdin, S., Demokritov, S.O.: Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9, 984–988 (2010)

    Article  ADS  Google Scholar 

  103. Madami, M., Bonetti, S., Consolo, G., Tacchi, G., Carlotti, S., Gubbiotti, G., Mancoff, F.B., Yar, M.A., Åkerman, J.: Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotechnol. 6, 635 (2011)

    Article  ADS  Google Scholar 

  104. Madami, M., Iacocca, E., Sani, S., Gubbiotti, G., Tacchi, S., Dumas, R.K., Åkerman, J., Carlotti, G.: Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study. Phys. Rev. B 92, 024403 (2015)

    Article  ADS  Google Scholar 

  105. Backes, D., Macià, F., Bonetti, S., Kukreja, R., Ohldag, H., Kent, A.D.: Direct observation of a localized magnetic soliton in a spin-transfer nanocontact. Phys. Rev. Lett. 115, 127205 (2015)

    Article  ADS  Google Scholar 

  106. Bonetti, S., Kukreja, R., Chen, Z., Macià, F., Hernàndez, J.M., Eklund, A., Backes, D., Frisch, J., Katine, J., Malm, G., Urazhdin, S., Kent, A.D., Stöhr, J., Ohldag, H., Dürr, H.A.: Direct observation and imaging of a spin-wave soliton with p −like symmetry. Nat. Commun. 6, 8889 (2015)

    Google Scholar 

  107. Hoefer, M.A., Silva, T.J., Keller, M.W.: Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Phys. Rev. B 82(5), 054432 (2010)

    Article  ADS  Google Scholar 

  108. Ivanov, A., Kosevich, A.M.: Bound states of a large number of magnons in a ferromagnet with single ion anisotropy. Zh. Eksp. Teor. Fiz. 72, 2000 (1977)

    Google Scholar 

  109. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117 (1990)

    Article  ADS  Google Scholar 

  110. Mohseni, S.M., Sani, S.R., Persson, J., Anh Nguyen, T.N., Chung, S., Pogoryelov, Y., Muduli, P.K., Iacocca, E., Eklund, A., Dumas, R.K., Bonetti, S., Deac, A., Hoefer, M.A., Åkerman, J.: Spin torque generated magnetic droplet solitons. Science 339, 1295 (2013)

    Article  ADS  Google Scholar 

  111. Macià, F., Backes, D., Kent, A.D.: Stable magnetic droplet solitons in spin-transfer nanocontacts. Nat. Nanotechnol. 9(12), 992–996 (2014)

    Article  ADS  Google Scholar 

  112. Chung, S., Eklund, A., Iacocca, E., Mohseni, S.M., Sani, S.R., Bookman, L., Hoefer, M.A., Dumas, R.K., Åkkerman, J.: Magnetic droplet nucleation boundary in orthogonal spin-torque nano-oscillators. Nat. Commun. 7(3), 11209 (2016)

    Article  ADS  Google Scholar 

  113. Zhou, Y., Iacocca, E., Awad, A.A., Dumas, R.K., Zhang, F.C., Åkkerman, J.: Dynamically stabilized magnetic skyrmions. Nat. Commun. 6, 8193 (2015)

    Article  ADS  Google Scholar 

  114. Statuto, N., Hernàndez, J.M., Kent, A.D., Macià, F.: Generation and stability of dynamical skyrmions and droplet solitons. Nanotechnology 29(32), 325302 (2018)

    Article  Google Scholar 

  115. Houshang, A., Iacocca, E., Durrenfeld, P., Sani, S.R., Åkkerman, J., Dumas, R.K.: Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotechnol. 11(3), 280+ (2016)

    Google Scholar 

  116. Demidov, V.E., Urazhdin, S., Edwards, E.R.J., Stiles, M.D., McMichael, R.D., Demokritov, S.O.: Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011)

    Article  ADS  Google Scholar 

  117. Demidov, V.E., Urazhdin, S., Ulrichs, H., Tiberkevich, V., Slavin, A., Baither, D., Schmitz, G., Demokritov, S.O.: Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11(12), 1028–31 (2012)

    Article  ADS  Google Scholar 

  118. Liu, L., Pai, C.-F., Ralph, D.C., Buhrman, R.A.: Magnetic oscillations driven by the spin hall effect in 3-terminal magnetic tunnel junction devices. Phys. Rev. Lett. 109, 186602 (2012)

    Article  ADS  Google Scholar 

  119. Demidov, V.E., Urazhdin, S., Zholud, A., Sadovnikov, A.V., Demokritov, S.O.: Nanoconstriction-based spin-hall nano-oscillator. Appl. Phys. Lett. 105(17), 172410 (2014)

    Article  ADS  Google Scholar 

  120. Duan, Z., Smith, A., Yang, L., Youngblood, B., Lindner, J., Demidov, V.E., Demokritov, S.O., Krivorotov, I.N.: Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014)

    Article  ADS  Google Scholar 

  121. Ranjbar, M., Durrenfeld, P., Haidar, M., Iacocca, E., Balinskiy, M., Le, T.Q., Fazlali, M., Houshang, A., Awad, A., Dumas, R.K., Åkkerman, J.: Cofeb based spin hall nano-oscillators. IEEE Magn. Lett. 5, 3000504 (2014)

    Article  Google Scholar 

  122. Awad, A.A., Dürrenfeld, P., Houshang, A., Dvornik, M., Iacocca, E., Dumas, R.K., Åkkerman, J.: Long-rang mutual synchronization of spin hall nano-oscillators. Nat. Phys. 13, 292–299 (2016)

    Article  Google Scholar 

  123. Kajiwara, Y., Harii, K., Takahashi, S., Ohe, J., Uchida, K., Mizuguchi, M., Umezawa, H., Kawai, H., Ando, K., Takanashi, K., Maekawa, S., Saitoh, E.: Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010)

    Article  ADS  Google Scholar 

  124. Hamadeh, A., d’Allivy Kelly, O., Hahn, C., Meley, H., Bernard, R., Molpeceres, A.H., Naletov, V.V., Viret, M., Anane, A., Cros, V., Demokritov, S.O., Prieto, J.L., Muñoz, M., de Loubens, G., Klein, O.: Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque. Phys. Rev. Lett. 113, 197203 (2014)

    Article  ADS  Google Scholar 

  125. Collet, M., de Milly, X., d’Allivy Kelly, O., Naletov, V.V., Bernard, R., Bortolotti, P., Ben Youssef, J., Demidov, V.E., Demokritov, S.O., Prieto, J.L., Munoz, M., Cros, V., Anane, A., de Loubens, G., Klein, O.: Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin-orbit torque. Nat. Commun. 7(10377) (2016)

    Google Scholar 

  126. Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O., Welland, M.E., Tricker, D.M.: Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042–1045 (1999)

    Article  ADS  Google Scholar 

  127. Manfrini, M., Kim, J.-V., Petit-Watelot, S., Van Roy, W., Lagae, L., Chappert, C., Devolder, T.: Propagation of magnetic vortices using nanocontacts as tunable attractors. Nat. Nanotechnol. 9(2), 121–125 (2014)

    Article  ADS  Google Scholar 

  128. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., Ono, T.: Magnetic vortex core observation in circular dots of permalloy. Science 289(5481), 930–932 (2000)

    Article  ADS  Google Scholar 

  129. Thiele, A.A.: Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1973)

    Article  ADS  Google Scholar 

  130. Pribiag, V.S., Krivorotov, I.N., Fuchs, G.D., Braganca, P.M., Ozatay, O., Sankey, J.C., Ralph, D.C., Buhrman, R.A.: Magnetic vortex oscillator driven by d.c. spin-polarized current. Nat. Phys. 3(7), 498–503 (2007)

    Google Scholar 

  131. Dussaux, A., Georges, B., Grollier, J., Cros, V., Khvalkovskiy, A.V., Fukushima, A., Konoto, M., Kubota, H., Yakushiji, K., Yuasa, S., Zvezdin, K.A., Ando, K., Fert, A.: Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nat. Commun. 1(8) (2010)

    Google Scholar 

  132. Petit-Watelot, S., Kim, J.-V., Ruotolo, A., Belanovsky, A.D., Skirdkov, P.N., Otxoa, R.M., Bouzehouane, K., Grollier, J., Vansteenkiste, A., Van de Wiele, B., Cros, V., Devolder, T.: Commensurability and chaos in magnetic vortex oscillations. Nat. Phys. 8(9):682–687 (2012)

    Article  Google Scholar 

  133. Sluka, V., K-kay, A., Deac, A.M., Bürgler, D.E., Schneider, C.M., Hertel, R.: Spin-torque-induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices. Nat. Commun. 6, 6409 (2015)

    Article  ADS  Google Scholar 

  134. Locatelli, N., Hamadeh, A., Abreu, A.F., Belanovsky, A.D., Skirdkov, P.N., Belanovsky, A.D., Lebrun, R., Naletov, V.V., Zvezdin, K.A., Munoz, M., Grollier, J., Klein, O., Cros, V., de Loubens, G.: Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators. Sci. Rep. 5(17039) (2015)

    Google Scholar 

  135. Rippard, W.H., Pufall, M.R., Kaka, S., Silva, T.J., Russek, S.E., Katine, J.A.: Injection locking and phase control of spin transfer nano-oscillators. Phys. Rev. Lett. 95, 067203 (2005)

    Article  ADS  Google Scholar 

  136. Bürgler, D.E., Sluka, V., Lehndorff, R., Deac, A.M., K-kay, A., Hertel, R., Schneider, C.M.: Injection locking of single-vortex and double-vortex spin-torque oscillators. Proc. SPIE 8100, 810018 (2011)

    Article  ADS  Google Scholar 

  137. Park, J.P., Eames, P., Engebretson, D.M., Berezovsky, J., Crowell, P.A.: Imaging of spin dynamics in closure domain and vortex structures. Phys. Rev. B 67,020403 (2003)

    Article  ADS  Google Scholar 

  138. Choe, S.-B., Acremann, Y., Scholl, A., Bauer, A., Doran, A., Stöhr, J., Padmore, H.A.: Vortex core-driven magnetization dynamics. Science 304(5669), 420–422 (2004)

    Article  ADS  Google Scholar 

  139. Stöhr, J., Siegmann, H.C.: Magnetism: From Fundamentals to Nanoscale Dynamics. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  140. Bigot, J.-Y., Hübner, W., Rasing, T., Chantrell, R. (eds.): Proceedings of the International Conference UMC 2013. Springer (2013)

    Google Scholar 

  141. Tudosa, I., Stamm, C., Kashuba, A.B., King, F., Siegmann, H.C., Stöhr, J., Ju, G., Lu, B., Weeler, D.: The ultimate speed of magnetic switching in granular recording media. Nature 428(6985), 831–833 (2004)

    Article  ADS  Google Scholar 

  142. Hansteen, F., Kimel, A., Kirilyuk, A., Rasing, T.: Nonthermal ultrafast optical control of the magnetization in garnet films. Phys. Rev. B 73(1), 1–14 (2006)

    Article  Google Scholar 

  143. Hansteen, F., Kimel, A., Kirilyuk, A., Rasing, T.: Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films. Phys. Rev. Lett. 95(4), 1–4 (2005)

    Article  Google Scholar 

  144. Kimel, A.V., Kirilyuk, A., Usachev, P.A., Pisarev, R.V., Balbashov, A.M., Rasing, T.: Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435(7042), 655–657 (2005)

    Article  ADS  Google Scholar 

  145. Stanciu, C.D., Hansteen, F., Kimel, A.V., Kirilyuk, A., Tsukamoto, A., Itoh, A., Rasing, T.: All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007)

    Article  ADS  Google Scholar 

  146. Lambert, C.-H., Mangin, S., Varaprasad, B.S.D.C.S., Takahashi, Y.K., Hehn, M., Cinchetti, M., Malinowski, G., Hono, K., Fainman, Y., Aeschlimann, M., Fullerton, E.E.: All-optical control of ferromagnetic thin films and nanostructures. Science 345(6202), 1337–1340 (2014)

    Article  ADS  Google Scholar 

  147. Zabel, H., Farle, M.: Magnetic Nanostructures. Springer Tracts in Modern Physics. Springer (2013). https://link.springer.com/book/10.1007/978-3-642-32042-2

    Book  Google Scholar 

  148. Wessels, P., Vogel, A., Tödt, J.-N., Wieland, M., Meier, G., Drescher, M.: Direct observation of isolated damon-eshbach and backward volume spin-wave packets in ferromagnetic microstripes. Sci. Rep. 6, 22117 EP (2016)

    Google Scholar 

  149. Mesler, B.L., Fischer, P., Chao, W., Anderson, E.H., Kim, D.-H.: Soft x-ray imaging of spin dynamics at high spatial and temporal resolution. J. Vacuum Sci. Technol. B 25(6), 2598–2602 (2007)

    Article  ADS  Google Scholar 

  150. Fischer, P., Ohldag, H.: X-rays and magnetism. Rep. Progress Phys. 78(9), 094501 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  151. Acremann, Y., Strachan, J.P., Chembrolu, V., Andrews, S.D., Tyliszczak, T., Katine, J.A., Carey, M.J., Clemens, B.M., Siegmann, H.C., Stohr, J.: Time-resolved imaging of spin transfer switching: beyond the macrospin concept. Phys. Rev. Lett. 96(21), 217202 (2006)

    Article  ADS  Google Scholar 

  152. Acremann, Y., Chembrolu, V., Strachan, J.P., Tyliszczak, T., Stöhr, J.: Software defined photon counting system for time resolved x-ray experiments. Rev. Sci. Instrum. 78(1), 014702 (2007)

    Article  ADS  Google Scholar 

  153. Bonetti, S., Kukreja, R., Chen, Z., Spoddig, D., Ollefs, K., Schöppner, C., Meckenstock, R., Ney, A., Pinto, J., Houanche, R., Frisch, J., Stöhr, J., Dürr, H.A., Ohldag, H.: Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 ghz frequency range. Rev. Sci. Instrum. 86(9), 093703 (2015)

    Article  ADS  Google Scholar 

  154. Acremann, Y., Back, C.H., Buess, M., Portmann, O., Vaterlaus, A., Pescia, D., Melchior, H.: Imaging precessional motion of the magnetization vector. Science 290(5491), 492–495 (2000)

    Article  ADS  Google Scholar 

  155. Open, H.P., Hopster, H.: Magnetic Microscopy of Nanostructures. Nanoscience and Technology. Springer (2005)

    Google Scholar 

  156. Beaurepaire, E., Merle, J.C., Daunois, A., Bigot, J.-Y.: Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250 (1996)

    Article  ADS  Google Scholar 

  157. Ju, G., Nurmikko, A.V., Farrow, R.F.C., Marks, R.F., Carey, M.J., Gurney, B.A.: Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system. Phys. Rev. Lett. 82, 3705 (1999)

    Article  ADS  Google Scholar 

  158. Ju, G., Chen, L., Nurmikko, A.V., Farrow, R.F.C., Marks, R.F., Carey, M.J., Gurney, B.A.: Coherent magnetization rotation induced by optical modulation in ferromagnetic/antiferromagnetic exchange-coupled bilayers. Phys. Rev. B 62, 1171 (2000)

    Article  ADS  Google Scholar 

  159. van Kampen, M., Jozsa, C., Kohlhepp, J.T., LeClair, P., Lagae, L., de Jonge, W.J.M., Koopmans, B.: All-optical probe of coherent spin waves. Phys. Rev. Lett. 88, 227201 (2002)

    Article  ADS  Google Scholar 

  160. Thiele, J.U., Buess, M., Back, C.H.: Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in ferh on a sub-picosecond time scale. Appl. Phys. Lett. 85, 2857 (2004)

    Article  ADS  Google Scholar 

  161. Ju, G.P., Hohlfeld, J., Bergman, B., van de Veerdonk, R.J.M., Mryasov, O.N., Kim, J.Y., Wu, X.W., Weller, D., Koopmans, B.: Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in ferh thin films. Phys. Rev. Lett. 93, 197403 (2004)

    Article  ADS  Google Scholar 

  162. Mangin, S., Gottwald, M., Lambert, C.-H., Steil, D., Uhlíř, V., Pang, L., Hehn, M., Alebrand, S., Cinchetti, M., Malinowski, G., Fainman, Y., Aeschlimann, M., Fullerton, E.E.: Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater 13(3), 286–292 (2014)

    Article  ADS  Google Scholar 

  163. Lambert, C.-H., Mangin, S., Varaprasad, B.S.D.C.S., Takahashi, Y.K., Hehn, M., Cinchetti, M., Malinowski, G., Hono, K., Fainman, Y., Aeschlimann, M., Fullerton, E.E.: All-optical control of ferromagnetic thin films and nanostructures. Science 345(6202), 1337–1340 (2014)

    Article  ADS  Google Scholar 

  164. Stanciu, C., Hansteen, F., Kimel, A., Kirilyuk, A., Tsukamoto, A., Itoh, A., Rasing, T.: All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007)

    Article  ADS  Google Scholar 

  165. Battiato, M., Carva, K., Oppeneer, P.M.: Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010)

    Article  ADS  Google Scholar 

  166. Melnikov, A., Razdolski, I., Wehling, T.O., Papaioannou, E.T., Roddatis, V., Fumagalli, P., Aktsipetrov, O., Lichtenstein, A.I., Bovensiepen, U.: Ultrafast transport of laser-excited spin-polarized carriers in Au∕Fe∕MgO(001). Phys. Rev. Lett. 107, 076601 (2011)

    Article  ADS  Google Scholar 

  167. Kaltenborn, S., Zhu, Y.-H., Schneider, H.C.: Wave-diffusion theory of spin transport in metals after ultrashort-pulse excitation. Phys. Rev. B 85, 235101 (2012)

    Article  ADS  Google Scholar 

  168. Alekhin, A., Bürstel, D., Melnikov, A., Diesing, D., Bovensiepen, U.: Ultrafast laser-excited spin transport in au/fe/mgo (001): relevance of the fe layer thickness. In: Bigot et al. (2013), p 214

    Google Scholar 

  169. Melnikov, A., Alekhin, A., Bürstel D., Diesing, D., Wehling, T.O., Rungger, I., Stamenova, M., Sanvito, S., Bovensiepen, U.: Ultrafast non-local spin dynamics in metallic bi-layers by linear and non-linear magneto-optics. In: Bigot et al. (2013), p 34

    Google Scholar 

  170. Schellekens, A.J., Verhoeven, W., Vader, T.N., Koopmans, B.: Investigating the contribution of superdiffusive transport to ultrafast demagnetization of ferromagnetic thin films. Appl. Phys. Lett. 102(25), 252408 (2013)

    Article  ADS  Google Scholar 

  171. Ando, K., Takahashi, S., Ieda, J., Kajiwara, Y., Nakayama, H., Yoshino, T., Harii, K., Fujikawa, Y., Matsuo, M., Maekawa, S., Saitoh, E.: Inverse spin-hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109(10), 103193 (2011)

    Article  Google Scholar 

  172. Hoffmann, A.: Spin hall effects in metals. IEEE Trans. Magn. 49, 5172 (2013)

    Article  ADS  Google Scholar 

  173. Kampfrath, T., Battiato, M., Maldonado, P., Eilers, G., Notzold, J., Mahrlein, S., Zbarsky, V., Freimuth, F., Mokrousov, Y., Blügel, S., Wolf, M., Radu, I., Oppeneer, P.M., Münzenberg, M.: Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nano 8(4), 256–260 (2013)

    Article  Google Scholar 

  174. Seifert, T., Jaiswal, S., Martens, U., Hannegan, J., Braun, L., Maldonado, P., Freimuth, F., Kronenberg, A., Henrizi, J., Radu, I., Beaurepaire, E., Mokrousov, Y., Oppeneer, P.M., Jourdan, M., Jakob, G., Turchinovich, D., Hayden, L.M., Wolf, M., Münzenberg, M., Kläui, M., Kampfrath, T.: Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon 10(7), 483–488 (2016)

    Article  ADS  Google Scholar 

  175. Malinowski, G., Dalla Longa, F., Rietjens, J.H.H., Paluskar, P.V., Huijink, R., Swagten, H.J.M., Koopmans, B.: Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nat. Phys. 4(11), 855–858 (2008)

    Article  Google Scholar 

  176. Rudolf, D., La-O-Vorakiat, C., Battiato, M., Adam, R., Shaw, J.M., Turgut, E., Maldonado, P., Mathias, S., Grychtol, P., Nembach, H.T., Silva, T.J., Aeschlimann, M., Kapteyn, H.C., Murnane, M.M., Schneider, C.M., Oppeneer, P.M.: Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nat. Commun. 3, 1037 EP (2012)

    Google Scholar 

  177. Turgut, E., La-o vorakiat, C., Shaw, J.M., Grychtol, P., Nembach, H.T., Rudolf, D., Adam, R., Aeschlimann, M., Schneider, C.M., Silva, T.J., Murnane, M.M., Kapteyn, H.C., Mathias, S.: Controlling the competition between optically induced ultrafast spin-flip scattering and spin transport in magnetic multilayers. Phys. Rev. Lett. 110, 197201 (2013)

    Google Scholar 

  178. Eschenlohr, A., Battiato, M., Maldonado, P., Pontius, N., Kachel, T., Holldack, K., Mitzner, R., Föhlisch, A., Oppeneer, P.M., Stamm, C.: Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater 12(4), 332–336 (2013)

    Article  ADS  Google Scholar 

  179. Eschenlohr, A., Battiato, M., Maldonado, P., Pontius, N., Kachel, T., Holldack, K., Mitzner, R., Fohlisch, A., Oppeneer, P.M., Stamm, C.: Reply to ’optical excitation of thin magnetic layers in multilayer structures’. Nat. Mater 13(2), 102–103 (2014)

    Article  ADS  Google Scholar 

  180. Khorsand, A.R., Savoini, M., Kirilyuk, A., Rasing, T.: Optical excitation of thin magnetic layers in multilayer structures. Nat. Mater 13(2), 101–102 (2014)

    Article  ADS  Google Scholar 

  181. Choi, G.-M., Min, B.-C., Lee, K.-J., Cahill, D.G.: Spin current generated by thermally driven ultrafast demagnetization. Nat. Commun. 5, 4334 EP (2014)

    Google Scholar 

  182. He, W., Zhu, T., Zhang, X.-Q., Yang, H.-T., Cheng, Z.-H.: Ultrafast demagnetization enhancement in cofeb/mgo/cofeb magnetic tunneling junction driven by spin tunneling current. Sci. Rep. 3, 2883 EP (2013)

    Google Scholar 

  183. Savoini, M., Piovera, C., Rinaldi, C., Albisetti, E., Petti, D., Khorsand, A.R., Duò, L., Dallera, C., Cantoni, M., Bertacco, R., Finazzi, M., Carpene, E., Kimel, A.V., Kirilyuk, A., Rasing, T.: Bias-controlled ultrafast demagnetization in magnetic tunnel junctions. Phys. Rev. B 89, 140402 (2014)

    Article  ADS  Google Scholar 

  184. Schellekens, A.J., Kuiper, K.C., de Wit, R.R.J.C., Koopmans, B.: Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation. Nat. Commun. 5, 4333 EP (2014)

    Google Scholar 

  185. Radu, I., Vahaplar, K., Stamm, C., Kachel, T., Pontius, N., Durr, H.A., Ostler, T.A., Barker, J., Evans, R.F.L., Chantrell, R.W., Tsukamoto, A., Itoh, A., Kirilyuk, A., Rasing, T., Kimel, A.V.: Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472(7342), 205–208 (2011)

    Article  ADS  Google Scholar 

  186. Graves, C.E., Reid, A.H., Wang, T., Wu, B., de Jong, S., Vahaplar, K., Radu, I., Bernstein, D.P., Messerschmidt, M., Müller, L., Coffee, R., Bionta, M., Epp, S.W., Hartmann, R., Kimmel, N., Hauser, G., Hartmann, A., Holl, P., Gorke, H., Mentink, J.H., Tsukamoto, A., Fognini, A., Turner, J.J., Schlotter, W.F., Rolles, D., Soltau, H., Strüder, L., Acremann, Y., Kimel, A.V., Kirilyuk, A., Rasing, T., Stöhr, J., Scherz, A.O., Dürr, H.A.: Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic gdfeco. Nat. Mater 12(4), 293–298 (2013)

    Google Scholar 

  187. Kukreja, R., Bonetti, S., Chen, Z., Backes, D., Acremann, Y., Katine, J.A., Kent, A.D., Dürr, H.A., Ohldag, H., Stöhr, J.: X-ray detection of transient magnetic moments induced by a spin current in Cu. Phys. Rev. Lett. 115, 096601 (2015)

    Article  ADS  Google Scholar 

  188. Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G.S.D., Fullerton, E.E., Leighton, C., MacDonald, A.H., Ralph, D.C., Arena, D.A., Dürr, H.A., Fischer, P., Grollier, J., Heremans, J.P., Jungwirth, T., Kimel, A.V., Koopmans, B., Krivorotov, I.N., May, S.J., Petford-Long, A.K., Rondinelli, J.M., Samarth, N., Schuller, I.K., Slavin, A.N., Stiles, M.D., Tchernyshyov, O., Thiaville, A., Zink, B.L.: Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

A.D.K. acknowledges partial support by the National Science Foundation under Award DMR-1610416. Work at NYU was also supported in part by the Quantum-Materials for Energy Efficient Neuromorphic-Computing, an Energy Frontier Research Center funded by DOE, Office of Science, BES, under Award DE-SC0019273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Z. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kent, A.D., Ohldag, H., Dürr, H.A., Sun, J.Z. (2021). Magnetization Dynamics. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_27

Download citation

Publish with us

Policies and ethics