Skip to main content

Adaptive Interaction Control of a Very Flexible Parallel Robot Manipulator

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2019)

Abstract

Robot manipulators have many applications and their tasks become complicated when they have interaction with their environments and humans. These complicated tasks need complex controllers. Also, the controller’s complexity will be increased when the used robot manipulators are very flexible. The robot in this work is very flexible while its first mode shape frequency is 1.85 Hz and its oscillation amplitude is more than \(10\%\) of its long link length. Hence, this flexibility must be taken into account in the modeling and controlling process. Another challenge appears when this very flexible robot manipulator interacts with an unknown environment. In this work, an adaptive impedance control for the very flexible robot manipulator is designed and implemented. To investigate the controller, a numerical simulation in Matlab is utilized. The results show that the robot using the adaptive controller can interact with different surfaces with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansarieshlaghi, F., Eberhard, P.: Design of a nonlinear observer for a very flexible parallel robot. In: Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, Stuttgart, Germany (2017)

    Google Scholar 

  2. Ansarieshlaghi, F., Eberhard, P.: Experimental study on a nonlinear observer application for a very flexible parallel robot. Int. J. Dyn. Control 7(3), 1046–1055 (2018)

    Article  Google Scholar 

  3. Ansarieshlaghi, F., Eberhard, P.: Trajectory tracking control of a very flexible robot using a feedback linearization controller and a nonlinear observer. In: Proceedings of 22nd CISM IFToMM Symposium on Robot Design, Dynamics and Control, Rennes, France (2018)

    Google Scholar 

  4. Ansarieshlaghi, F., Eberhard, P.: Hybrid force/position control of a very flexible parallel robot manipulator in contact with an environment. In: Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics Volume 2: ICINCO, Prague, Czech Republic, pp. 59-67. INSTICC, SciTePress (2019)

    Google Scholar 

  5. Burkhardt, M., Holzwarth, P., Seifried, R.: Inversion based trajectory tracking control for a parallel kinematic manipulator with flexible links. In: Proceedings of the 11th International Conference on Vibration Problems, Lisbon, Portugal (2013)

    Google Scholar 

  6. Burkhardt, M., Seifried, R., Eberhard, P.: Experimental studies of control concepts for a parallel manipulator with flexible links. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, Busan, Korea (2014)

    Google Scholar 

  7. Eberhard, P., Ansarieshlaghi, F.: Nonlinear position control of a very flexible parallel robot manipulator. In: Proceedings ECCOMAS Thematic Conference on Multibody Dynamics, Duisburg, Germany (2019)

    Google Scholar 

  8. Endo, T., Sasaki, M., Matsuno, F., Jia, Y.: Contact-force control of a flexible Timoshenko arm in rigid/soft environment. IEEE Trans. Autom. Control 62(5), 2546–2553 (2017)

    Article  MathSciNet  Google Scholar 

  9. Fehr, J., Grunert, D., Holzwarth, P., Fröhlich, B., Walker, N., Eberhard, P.: Morembs-a model order reduction package for elastic multibody systems and beyond. In: Reduced-Order Modeling (ROM) for Simulation and Optimization, pp. 141–166 (2018)

    Google Scholar 

  10. Feliu-Talegon, D., Feliu-Batlle, V., Tejado, I., Vinagre, B.M., HosseinNia, S.H.: Stable force control and contact transition of a single link flexible robot using a fractional-order controller. ISA Trans. 89, 139–157 (2019)

    Article  Google Scholar 

  11. Hogan, N.: Impedance control: an approach to manipulation: Part II-Implementation. J. Dyn. Syst. Meas. Contr. 107(1), 8–16 (1985)

    Article  Google Scholar 

  12. Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004)

    Article  Google Scholar 

  13. Kamikawa, Y., Enayati, N., Okamura, A.M.: Magnified force sensory substitution for telemanipulation via force-controlled skin deformation. In: IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, pp. 1–9 (2018)

    Google Scholar 

  14. Kurz, T., Burkhardt, M., Eberhard, P.: Systems with constraint equations in the symbolic multibody simulation software Neweul-M\(^2\). In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Brussels, Belgium (2011)

    Google Scholar 

  15. Li, Y., Ganesh, G., Jarrassé, N., Haddadin, S., Albu-Schaeffer, A., Burdet, E.: Force, impedance, and trajectory learning for contact tooling and haptic identification. IEEE Trans. Rob. 34(5), 1170–1182 (2018)

    Article  Google Scholar 

  16. Luh, J., Fisher, W., Paul, R.: Joint torque control by a direct feedback for industrial robots. IEEE Trans. Autom. Control 28(2), 153–161 (1983)

    Article  Google Scholar 

  17. Morlock, M., Burkhardt, M., Schröck, C., Seifried, R.: Nonlinear state estimation for trajectory tracking of a flexible parallel manipulator. IFAC-PapersOnLine 50(1), 3449–3454 (2017)

    Article  Google Scholar 

  18. Morlock, M., Burkhardt, M., Seifried, R.: Control of vibrations for a parallel manipulator with flexible links - concepts and experimental results. In: Proceedings of the MOVIC & RASD, International Conference, Southampton, England (2016)

    Google Scholar 

  19. Sandoval, J., Su, H., Vieyres, P., Poisson, G., Ferrigno, G., Momi, E.D.: Collaborative framework for robot-assisted minimally invasive surgery using a 7-DoF anthropomorphic robot. Robot. Auton. Syst. 106, 95–106 (2018)

    Article  Google Scholar 

  20. Schindlbeck, C., Haddadin, S.: Unified passivity-based cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, pp. 440–447 (2015)

    Google Scholar 

  21. Seifried, R., Burkhardt, M., Held, A.: Trajectory control of flexible manipulators using model inversion. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Brussels, Belgium (2011)

    Google Scholar 

  22. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Heidelberg (2016)

    MATH  Google Scholar 

  23. Siciliano, B., Villani, L.: Robot Force Control. Springer, Heidelberg (1999)

    Book  Google Scholar 

  24. Suarez, A., Giordano, A.M., Kondak, K., Heredia, G., Ollero, A.: Flexible link long reach manipulator with lightweight dual arm: soft-collision detection, reaction, and obstacle localization. In: IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, pp. 406–411 (2018)

    Google Scholar 

  25. Vogel, J., Haddadin, S., Jarosiewicz, B., Simeral, J.D., Bacher, D., Hochberg, L.R., Donoghue, J.P., van der Smagt, P.: An assistive decision-and-control architecture for force-sensitive hand-arm systems driven by human-machine interfaces. Int. J. Robot. Res. 34(6), 763–780 (2015)

    Article  Google Scholar 

  26. Wallrapp, O.: Standardization of flexible body modeling in multibody system codes, part i: definition of standard input data. Mech. Struct. Mach. 22(3), 283–304 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was performed within the Cluster of Excellence in Simulation Technology SimTech at the University of Stuttgart and is partially funded by the Landesgraduiertenkolleg Baden-WĂĽrttemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Ansarieshlaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ansarieshlaghi, F., Eberhard, P. (2021). Adaptive Interaction Control of a Very Flexible Parallel Robot Manipulator. In: Gusikhin, O., Madani, K., Zaytoon, J. (eds) Informatics in Control, Automation and Robotics. ICINCO 2019. Lecture Notes in Electrical Engineering, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-030-63193-2_8

Download citation

Publish with us

Policies and ethics