Skip to main content

THED: A Wrist-Worn Thermal Display to Perceive Spatial Thermal Sensations in Virtual Reality

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2 (FTC 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1289))

Included in the following conference series:

Abstract

This paper presents THED, a wearable thermal display to perceive spatial thermal sensations within a virtual reality (VR) environment. THED consists of a wrist-worn thermal stimulation module and a control module utilizing BluetoothTM communication to connect with the VR environment. To demonstrate THED, we have developed a VR environment showing a virtual campfire in a snowy climate where participants were able to experience the virtual campfire in different predetermined distances. We have conducted a user experiment to 1) determine the distance based perception of spatial thermal sensations in a VR setting (VR only), 2) determine the differences of thermal stimuli on participants’ wrists (thermal only), and 3) evaluate the effects of combined thermal stimuli towards their expected spatial thermal stimuli (VR + thermal). Our primary aim of this study is to learn how humans spatially perceive thermal sensations on their hands (utilizing only one hand vs. both hands) when given a wrist-worn thermal source coupled with a virtual reality scenario. Our findings show that different thermal stimuli utilized by THED were able to provide thermal sensations in virtual reality that closely mirrored participants’ expected thermal sensations in respective real world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://teslasuit.io/.

  2. 2.

    https://haptx.com.

  3. 3.

    https://www.dfrobot.com/product-1259.html.

  4. 4.

    https://www.pololu.com/product/1451.

  5. 5.

    https://unity.com/.

  6. 6.

    https://www.vive.com/.

References

  1. Benali-Khoudjal, M., Hafez, M., Alexandre, J.-M, Benachour, J., Kheddar, A.: Thermal feedback model for virtual reality. In: MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No. 03TH8717), pp. 153–158. IEEE (2003)

    Google Scholar 

  2. Chang, H.-Y., Tseng, W.-J., Tsai, C.-E., Chen, H.-Y., Peiris, R.L., Chan, L.: Facepush: introducing normal force on face with head-mounted displays. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST 2018, pp. 927–935. ACM, New York (2018)

    Google Scholar 

  3. Chen, Z., Peiris, R.L., Minamizawa, K.: A thermal pattern design for providing dynamic thermal feedback on the face with head mounted displays. In: International Conference on Tangible, Embedded, and Embodied Interaction, pp. 381–388 (2017)

    Google Scholar 

  4. Chen, Z., Peiris, R.L., Minamizawa, K.: A thermally enhanced weather checking system in VR. In: Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 123–125 (2017)

    Google Scholar 

  5. Chen, Z., Peng, W., Peiris, R., Minamizawa, K.: Thermoreality: thermally enriched head mounted displays for virtual reality. In: SIGGRAPH 2017 Posters, pp. 1–2. ACM (2017)

    Google Scholar 

  6. Dionisio, José: Virtual hell: a trip through the flames. IEEE Comput. Graph. Appl. 17(3), 11–14 (1997)

    Article  Google Scholar 

  7. Fee, M.G.: Peltier refrigerator using a high Tc superconductor. Appl. Phys. Lett. 62(10), 1161–1163 (1993)

    Article  Google Scholar 

  8. Ghahramani, Ali., Castro, Guillermo., Becerik-Gerber, Burcin, Xinran, Yu.: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort. Build. Environ. 109, 1–11 (2016)

    Article  Google Scholar 

  9. Gooch, D.: An Investigation into Communicating Social Presence With Thermal Devices. Ph.D thesis, MSc Dissertation (2009)

    Google Scholar 

  10. Grant, P.R., Reid, L.D.: Motion washout filter tuning: rules and requirements. J. Aircr. 34(2), 145–151 (1997)

    Article  Google Scholar 

  11. Grant, P.R., Reid, L.D.: Protest: an expert system for tuning simulator washout filters. J. Aircr. 34(2), 152–159 (1997)

    Article  Google Scholar 

  12. Halvey, M., Wilson, G., Brewster, S., Hughes, S.: “baby it’s cold outside": the influence of ambient temperature and humidity on thermal feedback. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 715–724. ACM, New York (2012)

    Google Scholar 

  13. Hannah, D., Halvey, M., Wilson, G., Brewster, S.A.: Using multimodal interactions for 3D television and multimedia browsing. In: Proceedings of the 9th European Conference on Interactive TV and Video, pp. 181–184. ACM (2011)

    Google Scholar 

  14. HaptX. Haptic gloves for VR training, simulation, and design (2020). https://haptx.com. Accessed 2 July 2020

  15. Hassouneh, M.A., Lee, H.-C., Abed, E.H.: Washout filters in feedback control: benefits, limitations and extensions. In: Proceedings of the 2004 American Control Conference, vol. 5, pp. 3950–3955. IEEE (2004)

    Google Scholar 

  16. Hülsmann, F., Fröhlich, J., Mattar, N., Wachsmuth, I.: Wind and warmth in virtual reality: implementation and evaluation. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 24:1–24:8. ACM, New York (2014)

    Google Scholar 

  17. Jain, D., Sra, M., Guo, J., Marques, R., Wu, R., Chiu, J., Schmandt, C.: Immersive terrestrial scuba diving using virtual reality. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2016, pp. 1563–1569. ACM, New York (2016)

    Google Scholar 

  18. Jeong, K., Seong, Y., Chung, J., Park, Y., Lee, W.: Directional thermal perception for wearable device. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, SAP 2015, p. 133. ACM, New York (2015)

    Google Scholar 

  19. Konishi, Y., Hanamitsu, N., Outram, B., Minamizawa, K., Mizuguchi, T., Sato, A.: Synesthesia suit: the full body immersive experience. In: ACM SIGGRAPH 2016 VR Village, SIGGRAPH 2016, pp. 20:1–20:1. ACM, New York (2016)

    Google Scholar 

  20. Lee, W., Lim, Y.: Thermo-message: exploring the potential of heat as a modality of peripheral expression. In: CHI 2010 Extended Abstracts on Human Factors in Computing Systems, pp. 4231–4236. ACM (2010)

    Google Scholar 

  21. Lopes, P., Ion, A., Baudisch, P.: Impacto: simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST 2015, pp. 11–19. ACM, New York (2015)

    Google Scholar 

  22. Marozau, D., Khurs, S., Aleksandrovich, R.: Method and wearable apparatus for synchronizing a user with a virtual environment, 15 September 2016. US Patent App. 14/905,094

    Google Scholar 

  23. Nakashige, M., Kobayashi, M., Suzuki, Y., Tamaki, H., Higashino, S.: Hiya-atsu media: augmenting digital media with temperature. In: CHI 2009 Extended Abstracts on Human Factors in Computing Systems, pp. 3181–3186. ACM (2009)

    Google Scholar 

  24. Peiris, R.L., Chan, L., Minamizawa, K.: Liquidreality: wetness sensations on the face for virtual reality. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 366–378. Springer, Cham (2018)

    Google Scholar 

  25. Peiris, R.L., Peng, W., Chen, Z., Chan, L., Minamizawa, K.: ThermoVR: exploring integrated thermal haptic feedback with head mounted displays. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 5452–5456. ACM, New York (2017)

    Google Scholar 

  26. Peiris, R.L., Feng, Y.-L., Chan, L., Minamizawa, K.: Thermalbracelet: exploring thermal haptic feedback around the wrist. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, pp. 170:1–170:11. ACM, New York (2019)

    Google Scholar 

  27. Peng, W., Peiris, R.L., Minamizawa, K.: Exploring of simulating passing through feeling on the wrist: using thermal feedback. In: Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST 2017, pp. 187–188. ACM, New York (2017)

    Google Scholar 

  28. Perret, J., Poorten, E.V.: Touching virtual reality: a review of haptic gloves. In: ACTUATOR 2018; 16th International Conference on New Actuators, pp. 1–5. VDE (2018)

    Google Scholar 

  29. Pyne, S.J.: Fire: A Brief History. University of Washington Press, Seattle (2011)

    Google Scholar 

  30. Ranasinghe, N., Jain, P., Karwita, S., Tolley, D., Do, E.Y.: Ambiotherm: enhancing sense of presence in virtual reality by simulating real-world environmental conditions. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 1731–1742. ACM, New York (2017)

    Google Scholar 

  31. Ranasinghe, N., Jain, P., Tram, N.T.N., Koh, K.C.R., Tolley, D., Karwita, S., Lien-Ya, L., Liangkun, Y., Shamaiah, K., Tung, C.E.W., Yen, C.C., Do, E.Y.: Season traveller: multisensory narration for enhancing the virtual reality experience. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 577:1–577:13. ACM, New York (2018)

    Google Scholar 

  32. Singhal, A., Jones, L.A.: Creating thermal icons-a model-based approach. ACM Trans. Appl. Percept. 15(2), 14:1–14:22 (2018)

    Google Scholar 

  33. Song, S., Noh, G., Yoo, J., Oakley, I., Cho, J., Bianchi, A.: Hot & tight: exploring thermo and squeeze cues recognition on wrist wearables. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 39–42 (2015)

    Google Scholar 

  34. Taylor, R.A., Solbrekken, G.L.: Comprehensive system-level optimization of thermoelectric devices for electronic cooling applications. IEEE Trans. Components Packag. Technol. 31(1), 23–31 (2008)

    Article  Google Scholar 

  35. Teslasuit. Full body haptic suit (2020). https://teslasuit.io/. Accessed 2 July 2020

  36. Tewell, J., Bird, J., Buchanan, G.R.: Heat-NAV: using temperature changes as navigation cues. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 1131–1135. ACM, New York (2017)

    Google Scholar 

  37. Tolley, D., Nguyen, T.N.T., Tang, A., Ranasinghe, N., Kawauchi, K., Yen, C.C.: Windywall: exploring creative wind simulations. In: Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI 2019, pp. 635–644. ACM, New York (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimesha Ranasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soucy, N., Ranasinghe, N., Rossow, A., James, M.N., Peiris, R. (2021). THED: A Wrist-Worn Thermal Display to Perceive Spatial Thermal Sensations in Virtual Reality. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2 . FTC 2020. Advances in Intelligent Systems and Computing, vol 1289. Springer, Cham. https://doi.org/10.1007/978-3-030-63089-8_53

Download citation

Publish with us

Policies and ethics