Skip to main content

A Cooperative Jamming Game in Wireless Networks Under Uncertainty

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2020)

Abstract

Considered is a multi-channel wireless network for secret communication that uses the signal-to-interference-plus-noise ratio (SINR) as the performance measure. An eavesdropper can intercept encoded messages through a degraded channel of each legitimate transmitter-receiver communication pair. A friendly interferer, on the other hand, may send cooperative jamming signals to enhance the secrecy performance of the whole network. Besides, the state information of the eavesdropping channel may not be known completely. The transmitters and the friendly interferer have to cooperatively decide on the optimal jamming power allocation strategy that balances the secrecy performance with the cost of employing intentional interference, while the eavesdropper tries to maximize her eavesdropping capacity. To solve this problem, we propose and analyze a non-zero sum game between the network defender and the eavesdropper who can only attack a limited number of channels. We show that the Nash equilibrium strategies for the players are of threshold type. We present an algorithm to find the equilibrium strategy pair. Numerical examples demonstrate the equilibrium and contrast it to baseline strategies.

This material is based upon work supported by the National Science Foundation (Grant No.1901721).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, E., Avrachenkov, K., Garnaev, A.: A jamming game in wireless networks with transmission cost. In: Chahed, T., Tuffin, B. (eds.) NET-COOP 2007. LNCS, vol. 4465, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72709-5_1

    Chapter  Google Scholar 

  2. Altman, E., Avrachenkov, K., Garnaev, A.: Jamming in wireless networks under uncertainty. Mob. Netw. Appl. 16(2), 246–254 (2011)

    Article  Google Scholar 

  3. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica J. Econometric Soc., 265–290 (1954)

    Google Scholar 

  4. Atallah, M., Kaddoum, G., Kong, L.: A survey on cooperative jamming applied to physical layer security. In: 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–5. IEEE (2015)

    Google Scholar 

  5. Cumanan, K., Alexandropoulos, G.C., Ding, Z., Karagiannidis, G.K.: Secure communications with cooperative jamming: optimal power allocation and secrecy outage analysis. IEEE Trans. Veh. Technol. 66(8), 7495–7505 (2017)

    Article  Google Scholar 

  6. Ding, Z., Leung, K.K., Goeckel, D.L., Towsley, D.: Opportunistic relaying for secrecy communications: cooperative jamming vs. relay chatting. IEEE Trans. Wirel. Commun. 10(6), 1725–1729 (2011)

    Article  Google Scholar 

  7. Dong, L., Han, Z., Petropulu, A.P., Poor, H.V.: Cooperative jamming for wireless physical layer security. In: 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 417–420. IEEE (2009)

    Google Scholar 

  8. Garnaev, A., Baykal-Gürsoy, M., Poor, H.V.: Incorporating attack-type uncertainty into network protection. IEEE Trans. Inf. Forensics Secur. 9(8), 1278–1287 (2014)

    Article  Google Scholar 

  9. Garnaev, A., Trappe, W.: An eavesdropping game with SINR as an objective function. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009. LNICST, vol. 19, pp. 142–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05284-2_9

    Chapter  Google Scholar 

  10. Garnaev, A., Trappe, W.: Secret communication when the eavesdropper might be an active adversary. In: Jonsson, M., Vinel, A., Bellalta, B., Belyaev, E. (eds.) MACOM 2014. LNCS, vol. 8715, pp. 121–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10262-7_12

    Chapter  Google Scholar 

  11. Goel, S., Negi, R.: Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 7(6), 2180–2189 (2008)

    Article  Google Scholar 

  12. Han, Z., Marina, N., Debbah, M., Hjørungnes, A.: Physical layer security game: interaction between source, eavesdropper, and friendly jammer. EURASIP J. Wirel. Commun. Netw. 2009, 1–10 (2010)

    Article  Google Scholar 

  13. Haphuriwat, N., Bier, V.M.: Trade-offs between target hardening and overarching protection. Eur. J. Oper. Res. 213(1), 320–328 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hu, L., Wen, H., Wu, B., Tang, J., Pan, F., Liao, R.F.: Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers. IEEE Trans. Veh. Technol. 67(3), 2108–2117 (2017)

    Article  Google Scholar 

  15. Hyadi, A., Rezki, Z., Alouini, M.S.: An overview of physical layer security in wireless communication systems with CSIT uncertainty. IEEE Access 4, 6121–6132 (2016)

    Article  Google Scholar 

  16. Jameel, F., Wyne, S., Kaddoum, G., Duong, T.Q.: A comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Commun. Surv. Tutor. 21(3), 2734–2771 (2018)

    Article  Google Scholar 

  17. Kim, S.L., Rosberg, Z., Zander, J.: Combined power control and transmission rate selection in cellular networks. In: Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No. 99CH36324), vol. 3, pp. 1653–1657. IEEE (1999)

    Google Scholar 

  18. Koo, I., Ahn, J., Lee, J.A., Kim, K.: Analysis of erlang capacity for the multimedia DS-CDMA systems. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 82(5), 849–855 (1999)

    Google Scholar 

  19. Leung-Yan-Cheong, S., Hellman, M.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24(4), 451–456 (1978)

    Article  MathSciNet  Google Scholar 

  20. Majumder, R., Warier, R.R., Ghose, D.: Game theory-based allocation of critical resources during natural disasters. In: 2019 Sixth Indian Control Conference (ICC), pp. 514–519 (2019)

    Google Scholar 

  21. Manshaei, M.H., Zhu, Q., Alpcan, T., Başar, T., Hubaux, J.P.: Game theory meets network security and privacy. ACM Comput. Surv. (CSUR) 45(3), 1–39 (2013)

    Article  Google Scholar 

  22. National Instruments Measurement Fundamentals: OFDM and Multi-Channel Communication Systems (2015). https://www.ni.com/en-us/innovations/white-papers/06/ofdm-and-multi-channel-communication-systems.html

  23. Rabbachin, A., Conti, A., Win, M.Z.: Intentional network interference for denial of wireless eavesdropping. In: 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, pp. 1–6 (2011)

    Google Scholar 

  24. Salem, A., Liao, X., Shen, Y., Jiang, X.: Provoking the adversary by detecting eavesdropping and jamming attacks: a game-theoretical framework. Wireless Communi. Mob. Comput. 2018 (2018)

    Google Scholar 

  25. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  26. Si, J., Cheng, Z., Li, Z., Cheng, J., Wang, H.M., Al-Dhahir, N.: Cooperative jamming for secure transmission with both active and passive eavesdroppers. arXiv preprint arXiv:2002.06324 (2020)

  27. Tang, X., Liu, R., Spasojevic, P., Poor, H.V.: Interference assisted secret communication. IEEE Trans. Inf. Theory 57(5), 3153–3167 (2011)

    Article  MathSciNet  Google Scholar 

  28. Tang, X., Liu, R., Spasojevic, P., Poor, H.V.: The Gaussian wiretap channel with a helping interferer. In: 2008 IEEE International Symposium on Information Theory, pp. 389–393. IEEE (2008)

    Google Scholar 

  29. Tekin, E., Yener, A.: The Gaussian multiple access wire-tap channel: wireless secrecy and cooperative jamming. In: 2007 Information Theory and Applications Workshop, pp. 404–413 (2007)

    Google Scholar 

  30. Tekin, E., Yener, A.: The general Gaussian multiple-access and two-way wiretap channels: achievable rates and cooperative jamming. IEEE Trans. Inf. Theory 54(6), 2735–2751 (2008)

    Article  MathSciNet  Google Scholar 

  31. Wei, L., Moghadasi, A.H., Sundararajan, A., Sarwat, A.I.: Defending mechanisms for protecting power systems against intelligent attacks. In: 2015 10th System of Systems Engineering Conference (SoSE), pp. 12–17. IEEE (2015)

    Google Scholar 

  32. Wyner, A.D.: The wire-tap channel. Bell System Technical Journal 54(8), 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

  33. Xu, Z., Baykal-Gürsoy, M.: A friendly interference game in wireless secret communication networks. In: Forthcoming in the Proceedings of the 10th International Conference on NETwork Games, COntrol and OPtimization (NETGCOOP), Cargèse, France (2021). https://hal.archives-ouvertes.fr/hal-02870629

  34. Yang, J., Kim, I.M., Kim, D.I.: Joint design of optimal cooperative jamming and power allocation for linear precoding. IEEE Trans. Commun. 62(9), 3285–3298 (2014)

    Article  Google Scholar 

  35. Yolmeh, A., Baykal-Gürsoy, M.: Urban rail patrolling: a game theoretic approach. J. Transp. Secur. 11(1–2), 23–40 (2018)

    Article  Google Scholar 

  36. Yuan, Z., Wang, S., Xiong, K., Xing, J.: Game theoretic jamming control for the gaussian interference wiretap channel. In: 2014 12th International Conference on Signal Processing (ICSP), pp. 1749–1754. IEEE (2014)

    Google Scholar 

  37. Zhang, G., Xu, J., Wu, Q., Cui, M., Li, X., Lin, F.: Wireless powered cooperative jamming for secure OFDM system. IEEE Trans. Veh. Technol. 67(2), 1331–1346 (2017)

    Article  Google Scholar 

  38. Zhao, G., Shi, W., Li, L., Li, S.: Passive primary receiver detection for underlay spectrum sharing in cognitive radio. IEEE Signal Process. Lett. 21(5), 564–568 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifan Xu .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof of Theorem 3

Note that

$$\begin{aligned} \mathbb {E}\left[ C_{E_i}(J_i)\right] = \frac{\partial v_E(\varvec{J},\varvec{y})}{\partial y_i}. \end{aligned}$$

Given \(y^o_m=1\) and \(y^o_i = 0, \forall i \ne m\), Theorem 2 implies

$$\begin{aligned} y^o_i T_i \sum _{k=1}^{K_i} \frac{\mathbb {E}\left[ A_i \right] \beta ^k_i p^k_i}{{\sigma _i}^2} - \gamma = - \gamma < w_D, \forall i \ne m, \end{aligned}$$

which leads to \(\tilde{J}^o_m(\tilde{w}_D, \varvec{y^o})=0, \forall i \ne m\).

Assume \((\varvec{\tilde{J}^o}(\tilde{w}_D),\varvec{y})\) is a pair of NE strategies. It is required that

$$\begin{aligned} w_A \ge \mathbb {E}\left[ C_{E_i}(0)\right] , \forall i \ne m, \end{aligned}$$

by KKT conditions (8). Also, since \(y^o_m > 0\), then

$$\begin{aligned} w_A = \mathbb {E}\left[ C_{E_m}(J^o_m(\tilde{w}_D))\right] \le \mathbb {E}\left[ C_{E_m}(0\right) ], \end{aligned}$$

by KKT conditions (8). Thus, it must be true that

$$\begin{aligned} \mathbb {E}\left[ C_{E_m}(0\right) ] \ge \mathbb {E}\left[ C_{E_i}(0\right) ], \forall i \ne m, \end{aligned}$$
$$\begin{aligned} \mathbb {E}\left[ C_{E_m}(J^o_m(\tilde{w}_D))\right] \ge \mathbb {E}\left[ C_{E_i}(0)\right] , \forall i \ne m, \end{aligned}$$

for the assumption to be true.    \(\square \)

Appendix B: Proof of Theorem 4

Let \(w_A\) be the Lagrange multiplier for the eavesdropper’s optimization problem (6). Note that

$$\begin{aligned} R_i(J_i) = \frac{\partial v_E(\varvec{J},\varvec{y})}{\partial y_i}, \end{aligned}$$
$$\begin{aligned} R_i(0) = \frac{\mathbb {E}\left[ A_i \right] T_i}{\sigma _i}, \end{aligned}$$

and \(R_i(J_i)\) is decreasing w.r.t. \(J_i \ge 0\). Let \(\varvec{J^*}\) be the cooperative jamming strategy in the NE. Note that

$$\begin{aligned} R_i(J^*_i) \le w_A, \forall i=1,...,N, \end{aligned}$$

as required by KKT condition (9). Thus, if \(R_i(0) > w_A\), then \(J^*_i > 0\). Let \(w_D\) be the Lagrange multiplier for the defender’s optimization problem (5) and \(\varvec{y^*}\) be the attack strategy in the NE. By KKT condition (7), if \(J^*_i > 0\), then

$$\begin{aligned} y^*_i T_i \sum _{k=1}^{K_i} \frac{\mathbb {E}\left[ A_i \right] \beta ^k_i p^k_i}{(\sigma _i + \beta ^k_i J^*_i)^2} - \gamma = w_D \ge 0, \end{aligned}$$

thus giving \(y^*_i > 0\). But, if \(y^*_i > 0\), then

$$\begin{aligned} R_i(J^*_i) = w_A, \end{aligned}$$

by KKT condition (9). In summary, if \(R_i(0) > w_A\), then \(J^*_i\) is the unique root of the equation,

$$\begin{aligned} R_i(x) = w_A. \end{aligned}$$

If \(R_i(0) \le w_A\), then

$$\begin{aligned} w_A \ge R_i(0)> R_i(J_i), \forall J_i > 0, \end{aligned}$$

which leads to \(J^*_i=0\) since \(R_i(J^*_i) < w_A\) if \(J^*_i>0\). Thus, let us define to show that the NE cooperative jamming strategy is dependent on \(w_A\).

Note that \(H_i(w_A,w_D)\) is the unique root of the equation,

$$\begin{aligned} \frac{\partial v_D(\varvec{J},\varvec{y^*})}{\partial J_i} \bigg |_{\varvec{J}=\varvec{J^*}} = w_D, \end{aligned}$$

w.r.t. \(y^*_i\).

If \(R_i(0) > w_A\), then \(J^*_i > 0\), which leads to \(y^*_i = H_i(w_A,w_D)\) by KKT condition (7).

If \(R_i(0) < w_A\), then \(R_i(J^*_i) = R_i(0) < w_A\) since \(J^*_i=0\). It follows that \(y^*_i=0\) by KKT condition (9).

If \(R_i(0) = w_A\), then \(J^*_i=0\), but it is possible to have \(y^*_i>0\) in a NE as long as

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial v_D(\varvec{J},\varvec{y^*})}{\partial J_i} \big |_{\varvec{J}=\varvec{J^*}} \le w_D, \text {by KKT condition (7)},\\ y^*_i \ge 0,\\ y^*_i + \sum \limits _{j \in I(w_A)} y^*_j \le 1. \end{array}\right. } \end{aligned}$$

Thus, \(\varvec{y}(w_A,w_D)\) in (12) is correctly defined to satisfy KKT conditions (7) and (9). Note that it is possible to have

  • \(y_i(w_A,w_D) = H_i(w_A,w_D) < 1 - \sum \limits _{j \in I(w_A)} y_j(w_A,w_D)\), or

  • \(\sum \limits _{j \in I(w_A)} y_j(w_A,w_D) > 1\).

So the constraint \(\sum _{i=1}^N y_i(w_A,w_D)=1\) is not guaranteed by (12).

Finally, it is required that

$$\begin{aligned} w_D(J-\sum _{i =1}^{N} J_i(w_A))=0. \end{aligned}$$

Thus, if \(\sum _{i \in I(w_A)} J_i(w_A) < J\), then \(w_D=0\). In this case, the only requirement missing for \((\varvec{J}(w_A), \varvec{y}(w_A,w_D))\) to be a pair of NE strategies is to satisfy

$$\begin{aligned} \sum _{i=1}^N y_i(w_A, w_D)=1. \end{aligned}$$

Now look at the case when \(\sum _{i \in I(w_A)} J_i(w_A) = J\). Following (11) and (12) when \(\sum _{i \in I(w_A)} J_i(w_A) = J\), it is guaranteed that \(\sum _{i=1}^N y_i(w_A, w_D)=1\). However, it is possible that \(w_D<0\), so the only requirement for \((\varvec{J}(w_A), \varvec{y}(w_A,w_D))\) to be a pair of NE strategies is to satisfy \(w_D \ge 0\).

In summary, following (10), (11) and (12), if

  1. 1.

    \(w_D \ge 0\), and

  2. 2.

    \(\sum _{i=1}^N y_i(w_A,w_D)=1\),

then \((w_D,w_A)\) is a proper pair of Lagrange multipliers for the Nash equilibrium, \((\varvec{J}(w_A), \varvec{y}(w_A,w_D))\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Baykal-Gürsoy, M. (2020). A Cooperative Jamming Game in Wireless Networks Under Uncertainty. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N. (eds) Security and Privacy in Communication Networks. SecureComm 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-030-63086-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63086-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63085-0

  • Online ISBN: 978-3-030-63086-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics