Skip to main content

An Encryption System for Securing Physical Signals

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2020)

Abstract

Secure communication is a necessity. However, encryption is commonly only applied to the upper layers of the protocol stack. This exposes network information to eavesdroppers, including the channel’s type, data rate, protocol, and routing information. This may be solved by encrypting the physical layer, thereby securing all subsequent layers. In order for this method to be practical, the encryption must be quick, preserve bandwidth, and must also deal with the issues of noise mitigation and synchronization.

In this paper, we present the Vernam Physical Signal Cipher (VPSC): a novel cipher which can encrypt the harmonic composition of any analog waveform. The VPSC accomplishes this by applying a modified Vernam cipher to the signal’s frequency magnitudes and phases. This approach is fast and preserves the signal’s bandwidth. In the paper, we offer methods for noise mitigation and synchronization, and evaluate the VPSC over a noisy wireless channel with multi-path propagation interference.

Y. Mirsky—Part of this author’s work was done in the Jerusalem College of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Python source code to the VPSC can be found online: https://github.com/ymirsky/VPSC-py.

  2. 2.

    The largest magnitude of the system is \(\phi -\varepsilon \) and not phi, similar to how in nmodm, the largest n can be is \(m-1\).

  3. 3.

    The Python source code to the VPSC can be found on online: https://github.com/ymirsky/VPSC-py.

References

  1. Sharc processor adsp-21367 reference, datasheet (2013). http://www.analog.com/static/imported-files/data_sheets/ADSP-21367_21368_21369.pdf

  2. Barker, E.B., Kelsey, J.M.: Recommendation for random number generation using deterministic random bit generators. NIST Special Publication 800–90A (2012)

    Google Scholar 

  3. Bloch, M., Barros, J.: Physical-Layer Security: From Information Theory to Security Engineering. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  4. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. J. Comput. 15(2), 364–383 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Csiszar, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978). https://doi.org/10.1109/TIT.1978.1055892

    Article  MathSciNet  MATH  Google Scholar 

  6. Dworkin, M.: Recommendation for block cipher modes of operation-methods and techniques. NIST Special Publication 800–30A (2001)

    Google Scholar 

  7. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering: Design Principles and Practical Applications, p. 70. Wiley, Hoboken (2012). Chap. 4

    Google Scholar 

  8. Garrett, P., Lieman, D.: Public-key Cryptography: Baltimore (Proceedings of Symposia in Applied Mathematics) (Proceedings of Symposia in Applied Mathematics). American Mathematical Society, Boston (2005)

    Google Scholar 

  9. Hudde, H.C.: Building stream ciphers from block ciphers and their security. Seminararbeit Ruhr-Universität Bochum (2009)

    Google Scholar 

  10. Jo, Y., Wu, D.: On cracking direct-sequence spread-spectrum systems. Wirel. Commun. Mob. Comput. 10(7), 986–1001 (2010)

    Google Scholar 

  11. Jones, K.: Fast solutions to real-data discrete Fourier transform. In: Jones, K. (ed.) The Regularized Fast Hartley Transform, pp. 15–25. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3917-0_2

    Chapter  Google Scholar 

  12. Kang, W., Liu, N.: Wiretap channel with shared key. In: 2010 IEEE Information Theory Workshop (ITW), pp. 1–5, August 2010. https://doi.org/10.1109/CIG.2010.5592665

  13. Khalil, M.: Real-time encryption/decryption of audio signal. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8, 25–31 (2016)

    Google Scholar 

  14. Law, Y.W., Palaniswami, M., Hoesel, L.V., Doumen, J., Hartel, P., Havinga, P.: Energy-efficient link-layer jamming attacks against wireless sensor network mac protocols. ACM Trans. Sen. Netw. 5(1), 6:1–6:38 (2009)

    Article  Google Scholar 

  15. Marton, K., Suciu, A., Ignat, I.: Randomness in digital cryptography: a survey. ROMJIST 13(3), 219–240 (2010)

    Google Scholar 

  16. Matsunaga, A., Koga, K., Ohkawa, M.: An analog speech scrambling system using the FFT technique with high-level security. IEEE J. Sel. Areas Commun. 7(4), 540–547 (1989). https://doi.org/10.1109/49.17718

    Article  Google Scholar 

  17. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. Discrete Mathematics and Its Applications. Taylor & Francis, Boca Raton (1996)

    MATH  Google Scholar 

  18. Nichols, R., Lekkas, P.: Wireless Security: Models, Threats, and Solutions. McGraw-Hill Telecom Professional. McGraw-Hill, New York (2002)

    Google Scholar 

  19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  20. Romanow, A.: IEEE standard for local and metropolitan area networks-media access control (MAC) security. IEEE Std 802.1AE-2006, pp. 1–142 (2006). https://doi.org/10.1109/IEEESTD.2006.245590

  21. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  22. Shiu, Y.S., Chang, S.Y., Wu, H.C., Huang, S.H., Chen, H.H.: Physical layer security in wireless networks: a tutorial. IEEE Wirel. Commun. 18(2), 66–74 (2011). https://doi.org/10.1109/MWC.2011.5751298

    Article  Google Scholar 

  23. Vacca, J.: Computer and Information Security Handbook. Elsevier Science, Amsterdam (2012)

    Google Scholar 

  24. Vernam, G.S.: Secret signaling system, July 1919. US Patent 1,310,719

    Google Scholar 

  25. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

  26. Yamamoto, H.: Rate-distortion theory for the Shannon cipher system. IEEE Trans. Inf. Theory 43(3), 827–835 (1997). https://doi.org/10.1109/18.568694

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou, X., Song, L., Zhang, Y.: Physical Layer Security in Wireless Communications. Wireless Networks and Mobile Communications. Taylor & Francis, Boca Raton (2013)

    Google Scholar 

Download references

Acknowledgements

This research was partly funded by the Israel Innovations Authority under WIN - the Israeli consortium for 5G Wireless intelligent networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisroel Mirsky .

Editor information

Editors and Affiliations

10 Appendix - Additional Figures

10 Appendix - Additional Figures

Fig. 10.
figure 10

QAM-16 constellation plots of the deciphered and demodulated symbols (1900 MHz LTE OFDMA), with various types of noise and interference, where red indicated incorrectly demodulated symbols. (Color figure online)

Fig. 11.
figure 11

The RSA method’s failure demonstrated by a sine wave on the top (plaintext) and the encrypted RSA signal on the bottom (ciphertext).

The proof that the Vernam Cipher and OTP can be extended from binary to N-ary values with out loss of secrecy, can be found here: https://github.com/ymirsky/VPSC-py/blob/master/Additional%20Proofs.pdf.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirsky, Y., Fedidat, B., Haddad, Y. (2020). An Encryption System for Securing Physical Signals. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N. (eds) Security and Privacy in Communication Networks. SecureComm 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-030-63086-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63086-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63085-0

  • Online ISBN: 978-3-030-63086-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics