Skip to main content

Solving Hard Problems by Protein Folding?

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12494))

Abstract

Inspired by the NP-hardness of string folding problems modeling the natural process of protein folding, we discuss the idea of solving instances of NP-hard problems (e.g., string folding problems) of moderate size by letting artificially assembled proteins to fold. The accuracy with which one can combinatorially model the protein folding process, e.g., by string folding, as well as the precision with which one could experimentally estimate the energy of folded artificial proteins are crucial issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins, P., de Paula, J.: Elements of Physical Chemistry, 4th edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  2. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. In: Proceedings of the RECOMB 1998, New York (1998)

    Google Scholar 

  3. Crescenzi, P., Goldman, D., Papadimitriou, C.H., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. J. Comput. Biol. 5(3), 423–466 (1998)

    Article  Google Scholar 

  4. Dessmark, A., Lingas, A., Lundell, E.-M.: Subexponential-time framework for optimal embeddings of graphs in integer lattices. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 248–259. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27810-8_22

    Chapter  Google Scholar 

  5. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)

    Article  Google Scholar 

  6. Fu, B., Wang, W.: A \(2^{O(n^{1-{1\over d}}\log n)}\) time algorithm for d-dimensional protein folding in the HP-model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 630–644. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_54

    Chapter  Google Scholar 

  7. Irbäck., A.: Personal communication, 2019 December

    Google Scholar 

  8. Levinthal, C.: Are there pathways for protein folding? Journal de Chimie Physique et de Physico-Chimie Biologique 65, 44–45 (1968)

    Article  Google Scholar 

  9. Mauri, G., Pavesi, G., Piccolboni, A.: Approximation algorithms for protein folding prediction. In: Proceedings of the SODA 1999, pp. S945–S946 (1999)

    Google Scholar 

  10. Nayak, A., Sinclair, A., Zwick, U.: Spatial codes and the hardness of string folding problems (extended abstract). In: Proceedings of the SODA 1998, pp. 639–648 (1998)

    Google Scholar 

  11. Paterson, M., Przytycka, T.: On the complexity of string folding. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 658–669. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_167

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is thankful to Eva-Marta Lundell and Mia Persson for some preliminary discussions and to Anders Irbäck for answering my question on the temperatures required by Conjecture 1. The research has been supported in part by Swedish Research Council grant 621-2017-03750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Lingas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lingas, A. (2020). Solving Hard Problems by Protein Folding?. In: Martín-Vide, C., Vega-Rodríguez, M.A., Yang, MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science(), vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63000-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62999-1

  • Online ISBN: 978-3-030-63000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics