Skip to main content

Cellulose Nanosystems from Synthesis to Applications

  • Living reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Cellulose is one of the abundant polymers commercially produced, with an annual output ranging between 75 and 100 billion tons. Cellulose-based nanosystems can be prepared by a variety of mechanical and chemical methods. The mechanical properties, anisotropic shape, high surface area, strength ability, renewability, low density, and biodegradability of the cellulose nanosystem make it a promising candidate for diverse applications. It has extensively been used in paper processing, paint, textile, pharmaceuticals, aerogels, sensors, and scaffolds for tissue regeneration. Cellulose nanosystems are currently explored in photonics, nanofilms, filters for oil separation, newer composite materials, jet fuel, aerospace, flexible optoelectronics, and medical devices. This chapter has discussed the current methodologies for synthesizing nanocellulose, its properties, and various applications. We desire to communicate the recent ongoing nanocellulose research, physicochemical properties, and potential futuristic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BNC:

Bacterial nanocellulose

CBH:

Cellulobiohydrolases

CMC:

Carboxymethylcellulose

CNCs:

Nanocellulose crystals

CNFs:

Nanocellulose fibers

CPC:

Chemically purified cellulose

ECM:

Extracellular matrix

ECNFs:

Electrospun nanofibers (ECNFs)

HIUS:

High-intensity ultrasonication (HIUS)

HPH:

High-pressure homogenizer

HPMC:

Hydroxypropyl methylcellulose

MFCs:

Microfibrillated cellulose fibers

MOF:

Metal-organic framework

nm:

Nanometer

NPs:

Nanoparticles

TEMPO:

2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl

References

  1. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, (2018)

    Google Scholar 

  2. Ariga, K., Aono, M.: Nanoarchitectonics, (2016)

    Google Scholar 

  3. Hood, E.: Nanotechnology: looking as we leap, (2004)

    Google Scholar 

  4. Qasim, U., Osman, A.I., Al-Muhtaseb, A.H., Farrell, C., Al-Abri, M., Ali, M., Vo, D.V.N., Jamil, F., Rooney, D.W.: Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environ. Chem. Lett. (2020). https://doi.org/10.1007/s10311-020-01090-x

  5. Lavanya, D., Kulkarni, P., Dixit, M., Raavi, P., Krishna, L.: Sources of cellulose and their applications–a review. Int. J. Drug Formul. Res. (2011)

    Google Scholar 

  6. Tanpichai, S., Biswas, S.K., Witayakran, S., Yano, H.: Water hyacinth: a sustainable lignin-poor cellulose source for the production of cellulose nanofibers. ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.9b04095

  7. Marcovich, N.E., Auad, M.L., Aranguren, M.I.: Responsive Nanocellulose Composites. Presented at the (2014)

    Google Scholar 

  8. Dufresne, A.: Nanocellulose processing properties and potential applications, (2019)

    Google Scholar 

  9. Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., Lapidot, S., Shoseyov, O.: Nanocellulose, a tiny fiber with huge applications, (2016)

    Google Scholar 

  10. Tayeb, A.H., Amini, E., Ghasemi, S., Tajvidi, M.: Cellulose nanomaterials-binding properties and applications: a review, (2018)

    Google Scholar 

  11. Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D.U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P.F., Scherman, O.: The wood from the trees: the use of timber in construction, (2017)

    Google Scholar 

  12. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.: Nanocellulose: from fundamentals to advanced applications, (2020)

    Google Scholar 

  13. Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R.: Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. Part B Eng. (2015). https://doi.org/10.1016/j.compositesb.2015.01.008

  14. George, J., Sabapathi, S.N.: Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. (2015). https://doi.org/10.2147/NSA.S64386

  15. Pérez-Madrigal, M.M., Edo, M.G., Alemán, C.: Powering the future: application of cellulose-based materials for supercapacitors, (2016)

    Google Scholar 

  16. Nechyporchuk, O., Belgacem, M.N., Bras, J.: Production of cellulose nanofibrils: a review of recent advances, (2016)

    Google Scholar 

  17. Sanders, J.E., Han, Y., Rushing, T.S., Gardner, D.J.: Electrospinning of cellulose nanocrystal-filled poly (Vinyl alcohol) solutions: material property assessment. Nano. (2019). https://doi.org/10.3390/nano9050805

  18. Michelin, M., Gomes, D.G., Romaní, A., Polizeli, M. de L.T.M., Teixeira, J.A.: Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry, (2020)

    Google Scholar 

  19. Prakash Menon, M., Selvakumar, R., Suresh Kumar, P., Ramakrishna, S.: Extraction and modification of cellulose nanofibers derived from biomass for environmental application, (2017)

    Google Scholar 

  20. Wakabayashi, M., Fujisawa, S., Saito, T., Isogai, A.: Nanocellulose film properties tunable by controlling degree of fibrillation of TEMPO-oxidized cellulose. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00037

  21. Gentile, Gennaro, Mariacristina Cocca, RobertoAvolio, Maria E. Errico, and Maurizio Avella: Effect of microfibrillated cellulose on microstructure and properties of poly(vinyl alcohol) foams. Polymers (2018). https://doi.org/10.3390/polym10080813

    Google Scholar 

  22. Berto, G.L., Arantes, V.: Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.169

  23. Silva, L.E., dos Santos, A. de A., Torres, L., McCaffrey, Z., Klamczynski, A., Glenn, G., Sena Neto, A.R. de, Wood, D., Williams, T., Orts, W., Damásio, R.A.P., Tonoli, G.H.D.: Redispersion and structural change evaluation of dried microfibrillated cellulose. Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.117165

  24. Neng, W., Enyong, D., Rongshi, C.: Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir. (2008). https://doi.org/10.1021/la702923w

  25. Nasir, M., Mehdi, M., Muhammad, A., Akhtar, Z., Zehra, D.N., Kazmi, M.R., Awais, M.: Facile preparation of spherical cellulose nanoparticles: chemical hydrolysis of fibres with tension. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-1970-6

  26. Xu, J.T., Chen, X.Q.: Preparation and characterization of spherical cellulose nanocrystals with high purity by the composite enzymolysis of pulp fibers. Bioresour. Technol. (2019). https://doi.org/10.1016/j.biortech.2019.121842

  27. Dai, J., Chae, M., Beyene, D., Danumah, C., Tosto, F., Bressler, D.C.: Co-production of cellulose nanocrystals and fermentable sugars assisted by endoglucanase treatment of wood pulp, (2018). https://doi.org/10.3390/ma11091645

  28. Thakur, M., Sharma, A., Ahlawat, V., Bhattacharya, M., Goswami, S.: Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Mater. Sci. Energy Technol. (2020). https://doi.org/10.1016/j.mset.2019.12.005

  29. Abitbol, T., Kam, D., Levi-Kalisman, Y., Gray, D.G., Shoseyov, O.: Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir. (2018). https://doi.org/10.1021/acs.langmuir.7b04127

  30. Eyley, S., Thielemans, W.: Surface modification of cellulose nanocrystals. Nanoscale. (2014). https://doi.org/10.1039/c4nr01756k

  31. Thomas, B., Raj, M.C., Athira, B.K., Rubiyah, H.M., Joy, J., Moores, A., Drisko, G.L., Sanchez, C.: Nanocellulose, a versatile green platform: from biosources to materials and their applications, (2018)

    Google Scholar 

  32. Kusmono, K., Akbar, D.A.: Influence of hydrolysis conditions on characteristics of nanocrystalline cellulose extracted from ramie fibers by hydrochloric acid hydrolysis. 1–23 (2020). https://doi.org/10.21203/rs.3.rs-31322/v1

  33. Abitbol, T., Cranston, E.D.: Chiral Nematic Self-Assembly of Cellulose Nanocrystals in Suspensions and Solid Films. Presented at the (2014)

    Google Scholar 

  34. Usov, I., Nyström, G., Adamcik, J., Handschin, S., Schütz, C., Fall, A., Bergström, L., Mezzenga, R.: Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat. Commun. (2015). https://doi.org/10.1038/ncomms8564

  35. Rojas, J., Bedoya, M., Ciro, Y.: Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In: Cellulose – Fundamental Aspects and Current Trends (2015)

    Google Scholar 

  36. Sajab, M.S., Mohan, D., Santanaraj, J., Chia, C.H., Kaco, H., Harun, S., Kamarudin, N.H.N.: Telescopic synthesis of cellulose nanofibrils with a stable dispersion of Fe(0) nanoparticles for synergistic removal of 5-fluorouracil. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-48274-2

  37. Gomes, R.J., Borges, M. de F., Rosa, M. de F., Castro-Gómez, R.J.H., Spinosa, W.A.: Acetic acid bacteria in the food industry: systematics, characteristics and applications, (2018)

    Google Scholar 

  38. Lin, S.P., Loira Calvar, I., Catchmark, J.M., Liu, J.R., Demirci, A., Cheng, K.C.: Biosynthesis, production and applications of bacterial cellulose, (2013)

    Google Scholar 

  39. McNamara, J.T., Morgan, J.L.W., Zimmer, J.: A molecular description of cellulose biosynthesis, (2015)

    Google Scholar 

  40. Ataide, J.A., De Carvalho, N.M., Rebelo, M.D.A., Chaud, M.V., Grotto, D., Gerenutti, M., Rai, M., Mazzola, P.G., Jozala, A.F.: Bacterial Nanocellulose loaded with bromelain: assessment of antimicrobial, antioxidant and physical-chemical properties. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-18271-4

  41. Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., Goswami, S.: Commercial application of cellulose nanocomposites – a review, (2019)

    Google Scholar 

  42. Moniri, M., Moghaddam, A.B.., Azizi, S., Rahim, R.A., Bin Ariff, A., Saad, W.Z., Navaderi, M., Mohamad, R.: Production and status of bacterial cellulose in biomedical engineering, (2017)

    Google Scholar 

  43. Kabir, S.M.F., Sikdar, P.P., Haque, B., Bhuiyan, M.A.R., Ali, A., Islam, M.N.: Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. (2018). https://doi.org/10.1007/s40204-018-0095-0

  44. Chen, N., Wang, H., Ling, C., Vermerris, W., Wang, B., Tong, Z.: Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.115207

  45. Carey, F.A., Sundberg, R.J.: Reactions of carbon nucleophiles with carbonyl compounds. In: Advanced Organic Chemistry (2007)

    Google Scholar 

  46. Malik, N.S., Ahmad, M., Minhas, M.U.: Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One. (2017). https://doi.org/10.1371/journal.pone.0172727

  47. Shen, X., Shamshina, J.L., Berton, P., Gurau, G., Rogers, R.D.: Hydrogels based on cellulose and chitin: fabrication, properties, and applications, (2015)

    Google Scholar 

  48. Zhang, X.F., Ma, X., Hou, T., Guo, K., Yin, J., Wang, Z., Shu, L., He, M., Yao, J.: Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chemie – Int. Ed. (2019). https://doi.org/10.1002/anie.201902578

  49. Habib, A., Sathish, V., Mallik, S., Khoda, B.: 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials (Basel). (2018). https://doi.org/10.3390/ma11030454

  50. Tong, R., Chen, G., Tian, J., He, M.: Highly stretchable, strain-sensitive, and ionic-conductive cellulose-based hydrogels for wearable sensors. Polymers (Basel). (2019). https://doi.org/10.3390/polym11122067

  51. Liebner, F., Potthast, A., Rosenau, T., Haimer, E., Wendland, M.: Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung. (2008). https://doi.org/10.1515/HF.2008.051

  52. Nita, L.E., Ghilan, A., Rusu, A.G., Neamtu, I., Chiriac, A.P.: New trends in bio-based aerogels, (2020)

    Google Scholar 

  53. Rudaz, C., Courson, R., Bonnet, L., Calas-Etienne, S., Sallée, H., Budtova, T.: Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules. (2014). https://doi.org/10.1021/bm500345u

  54. Gulrez, S.K.H., Al-Assaf, S., Phillips, G. O.: Hydrogels: methods of preparation, characterisation and applications. In: Progress in Molecular and Environmental Bioengineering – From Analysis and Modeling to Technology Applications (2011)

    Google Scholar 

  55. Lee, I., Kim, S.H., Rethinasabapathy, M., Haldorai, Y., Lee, G.W., Choe, S.R., Jang, S.C., Kang, S.M., Han, Y.K., Roh, C., Cho, W.S., Huh, Y.S.: Porous 3D Prussian blue/cellulose aerogel as a decorporation agent for removal of ingested cesium from the gastrointestinal tract. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-22715-w

  56. Fan, B., Chen, S., Yao, Q., Sun, Q., Jin, C.: Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials (Basel). (2017). https://doi.org/10.3390/ma10030311

  57. Šupová, M., Martynková, G.S., Barabaszová, K.: Effect of nanofillers dispersion in polymer matrices: a review. Sci. Adv. Mater. (2011). https://doi.org/10.1166/sam.2011.1136

  58. Chen, Y., Zhang, Y., Xu, C., Cao, X.: Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites. Carbohydr. Polym. (2015). https://doi.org/10.1016/j.carbpol.2015.05.017

  59. Mondal, S.: Review on nanocellulose polymer nanocomposites, (2018)

    Google Scholar 

  60. Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., Nassiopoulos, E.: Cellulose-based bio- and nanocomposites: a review, (2011)

    Google Scholar 

  61. Keerati-U-Rai, M., Corredig, M.: Effect of dynamic high pressure homogenization on the aggregation state of soy protein. J. Agric. Food Chem. (2009). https://doi.org/10.1021/jf803562q

  62. Siró, I., Plackett, D.: Microfibrillated cellulose and new nanocomposite materials: a review, (2010)

    Book  Google Scholar 

  63. Wang, T., Drzal, L.T.: Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl. Mater. Interfaces. (2012). https://doi.org/10.1021/am301438g

  64. Hassan, M.L., Mathew, A.P., Hassan, E.A., El-Wakil, N.A., Oksman, K.: Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci. Technol. (2012). https://doi.org/10.1007/s00226-010-0373-z

  65. Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M.: Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A Mater. Sci. Process. (2005). https://doi.org/10.1007/s00339-005-3316-z

  66. Piras, C.C., Fernández-Prieto, S., De Borggraeve, W.M.: Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives, (2019)

    Google Scholar 

  67. Liu, X., Li, Y., Ewulonu, C.M., Ralph, J., Xu, F., Zhang, Q., Wu, M., Huang, Y.: Mild alkaline pretreatment for isolation of native-like lignin and lignin-containing cellulose nanofibers (LCNF) from crop waste. ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.9b02800

  68. Zhang, L., Tsuzuki, T., Wang, X.: Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose. (2015). https://doi.org/10.1007/s10570-015-0582-6

  69. Frone, A.N., Panaitescu, D.M., Donescu, D.: Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Sci. Bull. Ser. B Chem. Mater. Sci. (2011)

    Google Scholar 

  70. Wang, B., Sain, M.: Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym. Int. (2007). https://doi.org/10.1002/pi.2167

  71. Lenhart, V., Quodbach, J., Kleinebudde, P.: Fibrillated cellulose via high pressure homogenization: analysis and application for orodispersible films. AAPS PharmSciTech. (2020). https://doi.org/10.1208/s12249-019-1593-7

  72. Herrick, F.W., Casebier, R.L., Hamilton, J.K., Sandberg, K.R.: Microfibrillated cellulose: morphology and accessibility. J. Appl. Polym. Sci., Appl. Polym. Symp. (1983)

    Google Scholar 

  73. Leitner, J., Hinterstoisser, B., Wastyn, M., Keckes, J., Gindl, W.: Sugar beet cellulose nanofibril-reinforced composites. Cellulose. (2007). https://doi.org/10.1007/s10570-007-9131-2

  74. Habibi, Y., Mahrouz, M., Vignon, M.R.: Microfibrillated cellulose from the Peel of prickly pear fruits. Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2008.12.034

  75. Jonoobi, M., Harun, J., Tahir, P.M., Shakeri, A., Saifulazry, S., Makinejad, M.D.: Physicochemical characterization of pulp and nanofibers from kenaf stem. Mater. Lett. (2011). https://doi.org/10.1016/j.matlet.2010.08.054

  76. Zimmermann, T., Bordeanu, N., Strub, E.: Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. (2010). https://doi.org/10.1016/j.carbpol.2009.10.045

  77. Zou, H., Zhao, N., Sun, S., Dong, X., Yu, C.: High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion. Colloids Surfaces A Physicochem. Eng. Asp. (2020). https://doi.org/10.1016/j.colsurfa.2020.124463

  78. Chen, P., Yu, H., Liu, Y., Chen, W., Wang, X., Ouyang, M.: Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose. (2013). https://doi.org/10.1007/s10570-012-9829-7

  79. Mishra, S.P., Manent, A.S., Chabot, B., Daneault, C.: Production of nanocellulose from native cellulose – various options utilizing ultrasound. BioResources. (2012). https://doi.org/10.15376/biores.7.1.0422-0436

  80. Singh, Y., Meher, J.G., Raval, K., Khan, F.A., Chaurasia, M., Jain, N.K., Chourasia, M.K.: Nanoemulsion: concepts, development and applications in drug delivery, (2017)

    Google Scholar 

  81. Rajan, K., Djioleu, A., Kandhola, G., Labbé, N., Sakon, J., Carrier, D.J., Kim, J.W.: Investigating the effects of hemicellulose pre-extraction on the production and characterization of loblolly pine nanocellulose. Cellulose. (2020). https://doi.org/10.1007/s10570-020-03018-8

  82. Amaral-Labat, G., Szczurek, A., Fierro, V., Pizzi, A., Masson, E., Celzard, A.: “Blue glue”: a new precursor of carbon aerogels. Microporous Mesoporous Mater. (2012). https://doi.org/10.1016/j.micromeso.2012.03.051

  83. Song, K., Zhu, X., Zhu, W., Li, X.: Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresour. Bioprocess. (2019). https://doi.org/10.1186/s40643-019-0279-z

  84. Zheng, D., Zhang, Y., Guo, Y., Yue, J.: Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans Regia L.) shell agricultural waste. Polymers (Basel). (2019). https://doi.org/10.3390/polym11071130

  85. Dufresne, A.: Nanocellulose: a new ageless bionanomaterial, (2013)

    Google Scholar 

  86. Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., Dufresne, A.: Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose. (2010). https://doi.org/10.1007/s10570-010-9449-z

  87. Jiang, F., Hsieh, Y.: Lo: chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. (2013). https://doi.org/10.1016/j.carbpol.2013.02.022

  88. Pinkert, A., Marsh, K.N., Pang, S., Staiger, M.P.: Ionic liquids and their interaction with cellulose. Chem. Rev. (2009). https://doi.org/10.1021/cr9001947

  89. Filpponen, I., Argyropoulos, D.S.: Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules. (2010). https://doi.org/10.1021/bm1000247

  90. Araki, J., Wada, M., Kuga, S., Okano, T.: Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surfaces A Physicochem. Eng. Asp. (1998). https://doi.org/10.1016/S0927-7757(98)00404-X

  91. Liu, D., Zhong, T., Chang, P.R., Li, K., Wu, Q.: Starch composites reinforced by bamboo cellulosic crystals. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2009.11.058

  92. Roman, M., Winter, W.T.: Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. (2004). https://doi.org/10.1021/bm034519+

  93. Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M.: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications, (2013)

    Google Scholar 

  94. Wulandari, W.T., Rochliadi, A., Arcana, I.M.: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. In: IOP Conference Series: Materials Science and Engineering (2016)

    Google Scholar 

  95. Fan, Z.: Consolidated bioprocessing for ethanol production. In: Biorefineries: Integrated Biochemical Processes for Liquid Biofuels (2014)

    Google Scholar 

  96. Nasir, M., Gupta, A., Hossen Beg, M.D., Chua, G.K., Asim, M.: Laccase application in medium density fibreboard to prepare a bio-composite. RSC Adv. (2014). https://doi.org/10.1039/c3ra40593a

  97. Henriksson, M., Henriksson, G., Berglund, L.A., Lindström, T.: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. (2007). https://doi.org/10.1016/j.eurpolymj.2007.05.038

  98. Josefsson, P., Henriksson, G., Wågberg, L.: The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases. Biomacromolecules. (2008). https://doi.org/10.1021/bm700980b

  99. Knott, B.C., Haddad Momeni, M., Crowley, M.F., MacKenzie, L.F., Götz, A.W., Sandgren, M., Withers, S.G., Staìšhlberg, J., Beckham, G.T.: The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J. Am. Chem. Soc. (2014). https://doi.org/10.1021/ja410291u

  100. Bäckström, M., Bolivar, S., Paltakari, J.: Effect of ionic form on fibrillation and the development of the fibre network strength during the refining of the kraft pulps, (2012)

    Google Scholar 

  101. Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A.: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. (2006). https://doi.org/10.1021/bm060154s

  102. Tahiri, C., Vignon, M.R.: TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose. (2000). https://doi.org/10.1023/A:1009276009711

  103. Vitz, J., Erdmenger, T., Haensch, C., Schubert, U.S.: Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem. (2009). https://doi.org/10.1039/b818061j

  104. Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J., Liu, Y.: Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym. (2012). https://doi.org/10.1016/j.carbpol.2012.07.038

  105. Marín, P., Martirani-Von Abercron, S.M., Urbina, L., Pacheco-Sánchez, D., Castañeda-Cataña, M.A., Retegi, A., Eceiza, A., Marqués, S.: Bacterial nanocellulose production from naphthalene. Microb. Biotechnol. (2019). https://doi.org/10.1111/1751-7915.13399

  106. Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V., Koutinas, A.: Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. (2015). https://doi.org/10.3390/ijms160714832

  107. Robotti, F., Sterner, I., Bottan, S., Monné Rodríguez, J.M., Pellegrini, G., Schmidt, T., Falk, V., Poulikakos, D., Ferrari, A., Starck, C.: Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials. 229, 119583 (2020). https://doi.org/10.1016/j.biomaterials.2019.119583

    Article  CAS  PubMed  Google Scholar 

  108. Cheng, K.-C., Huang, C.-F., Wei, Y., Hsu, S.: Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Mater. 11, 25 (2019). https://doi.org/10.1038/s41427-019-0124-z

    Article  CAS  Google Scholar 

  109. Geisel, N., Clasohm, J., Shi, X., Lamboni, L., Yang, J., Mattern, K., Yang, G., Schäfer, K.-H., Saumer, M.: Microstructured multilevel bacterial cellulose allows the guided growth of neural stem cells. Small. 12, 5407–5413 (2016). https://doi.org/10.1002/smll.201601679

    Article  CAS  PubMed  Google Scholar 

  110. Loh, E.Y.X., Mohamad, N., Fauzi, M.B., Ng, M.H., Ng, S.F., Mohd Amin, M.C.I.: Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep. 8, 2875 (2018). https://doi.org/10.1038/s41598-018-21174-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin, F., Wang, Z., Shen, Y., Tang, L., Zhang, P., Wang, Y., Chen, Y., Huang, B., Lu, B.: Natural skin-inspired versatile cellulose biomimetic hydrogels. J. Mater. Chem. A. 7, 26442–26455 (2019). https://doi.org/10.1039/C9TA10502F

    Article  CAS  Google Scholar 

  112. Hickey, R.J., Modulevsky, D.J., Cuerrier, C.M., Pelling, A.E.: Customizing the shape and microenvironment biochemistry of biocompatible macroscopic plant-derived cellulose scaffolds. ACS Biomater Sci. Eng. 4, 3726–3736 (2018). https://doi.org/10.1021/acsbiomaterials.8b00178

    Article  CAS  PubMed  Google Scholar 

  113. Gershlak, J.R., Hernandez, S., Fontana, G., Perreault, L.R., Hansen, K.J., Larson, S.A., Binder, B.Y.K., Dolivo, D.M., Yang, T., Dominko, T., Rolle, M.W., Weathers, P.J., Medina-Bolivar, F., Cramer, C.L., Murphy, W.L., Gaudette, G.R.: Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials. 125, 13–22 (2017). https://doi.org/10.1016/j.biomaterials.2017.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, J., Jung, H., Park, N., Park, S.-H., Ju, J.H.: Induced osteogenesis in plants decellularized scaffolds. Sci. Rep. 9, 20194 (2019). https://doi.org/10.1038/s41598-019-56651-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Suzuki, T., Nakagami, H.: Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. Eur. J. Pharm. Biopharm. 47, 225–230 (1999). https://doi.org/10.1016/S0939-6411(98)00102-7

    Article  CAS  PubMed  Google Scholar 

  116. Perioli, L., Ambrogi, V., Rubini, D., Giovagnoli, S., Ricci, M., Blasi, P., Rossi, C.: Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J. Control. Release. 95, 521–533 (2004). https://doi.org/10.1016/j.jconrel.2003.12.018

    Article  CAS  PubMed  Google Scholar 

  117. Kolakovic, R., Peltonen, L., Laaksonen, T., Putkisto, K., Laukkanen, A., Hirvonen, J.: Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech. 12, 1366–1373 (2011). https://doi.org/10.1208/s12249-011-9705-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wong, C.Y., Martinez, J., Carnagarin, R., Dass, C.R.: In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor. J. Pharm. Pharmacol. 69, 285–294 (2017). https://doi.org/10.1111/jphp.12694

    Article  CAS  PubMed  Google Scholar 

  119. Laffleur, F., Egeling, M.: Evaluation of cellulose based patches for oral mucosal impairment. J. Drug Deliv. Sci. Technol. 58, 101839 (2020). https://doi.org/10.1016/j.jddst.2020.101839

    Article  CAS  Google Scholar 

  120. Kang, N.-W., Kim, M.-H., Sohn, S.-Y., Kim, K.-T., Park, J.-H., Lee, S.-Y., Lee, J.-Y., Kim, D.-D.: Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials. 182, 245–258 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.030

    Article  CAS  PubMed  Google Scholar 

  121. Kim, E., Erdos, G., Huang, S., Kenniston, T.W., Balmert, S.C., Carey, C.D., Raj, V.S., Epperly, M.W., Klimstra, W.B., Haagmans, B.L., Korkmaz, E., Falo, L.D., Gambotto, A.: Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. 55, 102743 (2020). https://doi.org/10.1016/j.ebiom.2020.102743

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jeong, H.-R., Bae, J.-Y., Park, J.-H., Baek, S.-K., Kim, G., Park, M.-S., Park, J.-H.: Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. J. Control. Release. 324, 280–288 (2020). https://doi.org/10.1016/j.jconrel.2020.05.024

    Article  CAS  PubMed  Google Scholar 

  123. Jo, J.H., Jo, C.-H., Qiu, Z., Yashiro, H., Shi, L., Wang, Z., Yuan, S., Myung, S.-T.: Nature-derived cellulose-based composite separator for sodium-ion batteries. Front. Chem. 8, 1–12 (2020). https://doi.org/10.3389/fchem.2020.00153

    Article  CAS  Google Scholar 

  124. Kim, H., Guccini, V., Lu, H., Salazar-Alvarez, G., Lindbergh, G., Cornell, A.: Lithium ion battery separators based on carboxylated cellulose nanofibers from wood. ACS Appl. Energy Mater. 2, 1241–1250 (2019). https://doi.org/10.1021/acsaem.8b01797

    Article  CAS  Google Scholar 

  125. Delaporte, N., Lajoie, G., Collin-Martin, S., Zaghib, K.: Toward low-cost all-organic and biodegradable Li-ion batteries. Sci. Rep. 10, 3812 (2020). https://doi.org/10.1038/s41598-020-60633-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pavlin, N., Hribernik, S., Kapun, G., Talian, S.D., Njel, C., Dedryvère, R., Dominko, R.: The role of cellulose based separator in lithium sulfur batteries. J. Electrochem. Soc. 166, A5237–A5243 (2019). https://doi.org/10.1149/2.0401903jes

    Article  CAS  Google Scholar 

  127. Kuang, Y., Chen, C., Pastel, G., Li, Y., Song, J., Mi, R., Kong, W., Liu, B., Jiang, Y., Yang, K., Hu, L.: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398 (2018). https://doi.org/10.1002/aenm.201802398

    Article  CAS  Google Scholar 

  128. Nyström, G., Razaq, A., Strømme, M., Nyholm, L., Mihranyan, A.: Ultrafast all-polymer paper-based batteries. Nano Lett. 9, 3635–3639 (2009). https://doi.org/10.1021/nl901852h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tian, W., VahidMohammadi, A., Reid, M.S., Wang, Z., Ouyang, L., Erlandsson, J., Pettersson, T., Wågberg, L., Beidaghi, M., Hamedi, M.M.: Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31, e1902977 (2019). https://doi.org/10.1002/adma.201902977

    Article  PubMed  Google Scholar 

  130. Zhou, S., Kong, X., Zheng, B., Huo, F., Strømme, M., Xu, C.: Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano. 13, 9578–9586 (2019). https://doi.org/10.1021/acsnano.9b04670

    Article  CAS  PubMed  Google Scholar 

  131. Gao, L., Chao, L., Hou, M., Liang, J., Chen, Y., Yu, H.-D., Huang, W.: Flexible, transparent nanocellulose paper-based perovskite solar cells. npj Flex. Electron. 3, 4 (2019). https://doi.org/10.1038/s41528-019-0048-2

  132. Zhang, H., Sun, X., Hubbe, M., Pal, L.: Flexible and pressure-responsive sensors from cellulose fibers coated with multiwalled carbon nanotubes. ACS Appl. Electron. Mater. 1, 1179–1188 (2019). https://doi.org/10.1021/acsaelm.9b00182

    Article  CAS  Google Scholar 

  133. Xie, Y., Xu, H., He, X., Hu, Y., Zhu, E., Gao, Y., Liu, D., Shi, Z., Li, J., Yang, Q., Xiong, C.: Flexible electronic skin sensor based on regenerated cellulose/carbon nanotube composite films. Cellulose. 27, 10199–10211 (2020). https://doi.org/10.1007/s10570-020-03496-w

    Article  CAS  Google Scholar 

  134. Fu, Q., Chen, Y., Sorieul, M.: Wood-based flexible electronics. ACS Nano. 14, 3528–3538 (2020). https://doi.org/10.1021/acsnano.9b09817

    Article  CAS  PubMed  Google Scholar 

  135. Cui, X., Lee, J.J.L., Chen, W.N.: Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Sci. Rep. 9, 18166 (2019). https://doi.org/10.1038/s41598-019-54638-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, Y., Li, G., Hu, Y., Wang, A., Lu, F., Zou, J.-J., Cong, Y., Li, N., Zhang, T.: Integrated conversion of cellulose to high-density aviation fuel. Joule. 3, 1028–1036 (2019). https://doi.org/10.1016/j.joule.2019.02.005

    Article  CAS  Google Scholar 

  137. Guan, Q.-F., Yang, H.-B., Han, Z.-M., Zhou, L.-C., Zhu, Y.-B., Ling, Z.-C., Jiang, H.-B., Wang, P.-F., Ma, T., Wu, H.-A., Yu, S.-H.: Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6, eaaz1114 (2020). https://doi.org/10.1126/sciadv.aaz1114

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Kumar Rengan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvi, S.B., Jogdand, A., Rengan, A.K. (2021). Cellulose Nanosystems from Synthesis to Applications. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-62976-2_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62976-2_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62976-2

  • Online ISBN: 978-3-030-62976-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics