Skip to main content

Skew-Elliptical Cluster Processes

  • Chapter
  • First Online:
Advances in Statistics - Theory and Applications

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

  • 777 Accesses

Abstract

This paper introduces skew-elliptical cluster processes. In contrast to the simple Gaussian isotropic structure of the distribution of the “children” events of a Thomas process, we propose an anisotropic structure by allowing the choice of a flexible covariance matrix and incorporating skewness or ellipticity parameters into the structure. Since the theoretical pair correlation functions of these processes are complex and analytically incomplete, and therefore the estimation of the parameters is computationally intensive, we propose reasonable approximations of the theoretical pair correlation functions of these cluster processes, which allow for a simpler parameter estimation. We present the estimation of their parameters using the minimum contrast method. For a data application, we use a fraction of the full redwood dataset. Our analysis shows that an elliptical cluster process can describe this point pattern better than a common Thomas process, since it is able to statistically model the non-circular shapes of the clusters in the data. The skew-elliptical cluster processes can be very meaningful for analyzing complex datasets in the field of spatial point processes since they provide more flexibility to detect interesting characteristics of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arellano-Valle, R. B., & Azzalini, A. (2006). On the unification of families of skew-normal distributions. Scandinavian Journal of Statistics, 33, 561–574.

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle, R. B., & Genton, M. G. (2005). On fundamental skew distributions. Journal of Multivariate Analysis, 96, 93–116.

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle, R. B., & Genton, M. G. (2010a). Multivariate unified skew-elliptical distributions. Chilean Journal of Statistics, 1, 17–33.

    MathSciNet  MATH  Google Scholar 

  • Arellano-Valle, R. B., & Genton, M. G. (2010b). Multivariate extended skew-t distributions and related families. Metron, 68, 2001–234

    MathSciNet  MATH  Google Scholar 

  • Arnold, B. C., & Beaver, R. J. (2000). Some skewed multivariate distributions. American Journal of Mathematical and Management Sciences, 20, 27–38.

    Article  MathSciNet  Google Scholar 

  • Arnold, B. C., & Beaver, R. J. (2002). Skewed multivariate models related to hidden truncation and/or selective reporting. TEST, 11, 7–54.

    Article  MathSciNet  Google Scholar 

  • Azzalini, A., & Capitanio, A. (1999). Statistical applications of the multivariate skew normal distributions. Journal of the Royal Statistical Society B, 61, 579–602.

    Article  MathSciNet  Google Scholar 

  • Azzalini, A., & Capitanio, A. (2014). The skew-normal and related families. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715–726.

    Article  MathSciNet  Google Scholar 

  • Baddeley, A. J., & Turner, R. (2005). SPATSTAT: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 1–42.

    Article  Google Scholar 

  • Baddeley, A. J., Rubak, E., & Turner, R. (2015). Spatial point patterns: Methodology and applications with R. London: Chapman and Hall/CRC Press.

    Book  Google Scholar 

  • Castelloe, J. M. (1998). Issues in reversible jump Markov chain Monte Carlo and composite EM analysis, applied to spatial Poisson cluster processes. Ph.D. thesis, University of Iowa (1998)

    Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data. New York, NY: Wiley (1993)

    Google Scholar 

  • Dao, N. A., & Genton, M. G. (2014). A Monte Carlo adjusted goodness-of-fit test for parametric models describing spatial point patterns. Journal of Computational and Graphical Statistics, 23, 497–517.

    Article  MathSciNet  Google Scholar 

  • Dickey, J. M. (1966). On a multivariate generalization of the Behrens–Fisher distribution. The Annals of Mathematical Statistics, 37, 763.

    Google Scholar 

  • Dickey, J. M. (1968). Three multidimensional-integral identities with Bayesian applications. The Annals of Mathematical Statistics, 39, 1615–1627

    Article  MathSciNet  Google Scholar 

  • Diggle, P. J. (2003). Statistical analysis of spatial point patterns. London: Arnold.

    MATH  Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1953). Higher transcendental functions. New York, NY: McGraw-Hill.

    MATH  Google Scholar 

  • González-Farías, G., Domíniguez-Molina, J. A., & Gupta, A. K. (2004). The closed skew-normal distribution. In M. G. Genton (Ed.), Skew-elliptical distributions and their applications: A journey beyond normality (pp. 25–42). Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Gupta, A. K., Aziz, M. A., & Ning, W. (2013). On some properties of the unified skew normal distribution. Journal of Statistical Theory and Practice, 7, 480–495.

    Article  MathSciNet  Google Scholar 

  • Gupta, A. K., González-Farías, G., & Domíniguez-Molina, J. A. (2004). A multivariate skew normal distribution. Journal of Multivariate Analysis, 89, 181–190.

    Article  MathSciNet  Google Scholar 

  • Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. Wiley, Statistics in Practice.

    MATH  Google Scholar 

  • Liseo, B., & Loperfido, N. (2003). A Bayesian interpretation of the multivariate skew-normal distribution. Statistics and Probability Letters, 61, 395–401.

    Article  MathSciNet  Google Scholar 

  • McQuarrie, D. A. (1976). Statistical mechanics. New York, NY: Harper & Row.

    MATH  Google Scholar 

  • Møller, J., & Toftaker, H. (2014). Geometric anisotropic spatial point pattern analysis and Cox processes. Scandinavian Journal of Statistics, 41, 414–435.

    Article  MathSciNet  Google Scholar 

  • Møller, J., & Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point processes. London: Chapman and Hall/CRC Press.

    Book  Google Scholar 

  • Neyman, Y., Scott, E. L.: A theory for the spatial distribution of galaxies. Astrophysics Journal, 116, 144–163 (1952)

    Article  MathSciNet  Google Scholar 

  • Neyman, Y., & Scott, E. L. (1958). Statistical approach to problems of cosmology. Journal of the Royal Statistical Society B, 20, 1–43.

    MathSciNet  MATH  Google Scholar 

  • Neyman, Y., Scott, E. L. (1972). Processes of clustering and applications. In P. A. W. Lewis (Ed.), Stochastic processes (pp. 646–681). New York, NY: Wiley.

    Google Scholar 

  • Neyman, Y., Scott, E. L., & Shane, C. D. (1953). On the spatial distribution of galaxies: A specific model. Astrophysics Journal, 117, 92–133.

    Article  Google Scholar 

  • Ohser, J. (1983). On estimators for the reduced second moment measure of point processes. Statistics: A Journal of Theoretical and Applied Statistics, 14, 63–71.

    MathSciNet  MATH  Google Scholar 

  • Penttinen, A., Stoyan, D., & Henttonen, H. (1992). Marked point processes in forest statistics. Forest Science, 38, 806–824.

    Google Scholar 

  • R Core Team. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/

    Google Scholar 

  • Ripley, B. D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13, 255–266.

    Article  MathSciNet  Google Scholar 

  • Ripley, B. D. (1988). Statistical inference for spatial processes. Australia: Cambridge University Press.

    Book  Google Scholar 

  • Stoyan, D., & Stoyan, H. (2006). Estimating pair correlation functions of planar cluster processes. Biometrical Journal, 38, 259–271.

    Article  Google Scholar 

  • Strauss, D. J. (1975). A model for clustering. Biometrika, 63, 467–475.

    Article  MathSciNet  Google Scholar 

  • Tanaka, U., Ogata, Y., & Stoyan, D. (2008). A model selection and estimation of the Neyman–Scott type spatial cluster models. Biometrical Journal, 50, 43–57.

    Article  MathSciNet  Google Scholar 

  • Thomas, M. (1949). A generalization of Poisson’s binomial limit for use in ecology. Biometrika, 36, 18–25.

    Article  MathSciNet  Google Scholar 

  • Wolfram Research. (2020). Mathematica version 12.1. Champaign, IL, USA (2020). https://www.wolfram.com/mathematica

Download references

Acknowledgements

The authors would like to thank Professor Reinaldo Arellano-Valle and a reviewer for their useful suggestions and comments. The authors also acknowledge the Texas A&M University Brazos cluster that contributed to the research reported here. The work of the second author was supported by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Genton .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Table of Acronyms

Acronym

Complete words

AGOF

Adjusted goodness-of-fit

cdf

Cumulative distribution function

CP

Cluster process

CSR

Complete spatial randomness

df

Degrees of freedom

EST

Extended skew-t

GOF

Goodness-of-fit

MCM

Minimum contrast method

pcf

Pair correlation function

pdf

Probability density function

SPP

Spatial point pattern

SUE

Unified skew-elliptical

SUN

Unified skew-normal

TP

Thomas process

Skew-Elliptical-Normal Cluster Processes

According to the transformation in (1), the joint distribution f R(r, θ) of (R,  Θ) is

$$\displaystyle \begin{aligned} f_{R, \Theta}(r, \theta) &= \frac{r \exp\left(-\frac{\sigma^2_2 r^2 \cos^2\theta + \sigma^2_1 r^2 \sin^2\theta}{4\sigma^2_1\sigma^2_2}\right)}{\pi \sigma_1 \sigma_2}{}\\ &\quad \times \Phi_2\left\{\frac{\left ( \frac{\alpha_1 r \cos\theta}{\sigma_1} + \frac{\alpha_2 r \sin\theta}{\sigma_2} \right ) \begin{pmatrix} 1\\-1\end{pmatrix}}{2\sqrt{1+\alpha^2_1+\alpha^2_2}};\frac{\begin{pmatrix} 2 + \alpha^2_1 + \alpha^2_2 & \alpha^2_1 + \alpha^2_2 \\ \alpha^2_1 + \alpha^2_2 & 2 + \alpha^2_1 + \alpha^2_2 \end{pmatrix}}{2(1+\alpha^2_1+\alpha^2_2)}\right\}. \end{aligned} $$
(A.1)

Elliptical-Normal Cluster Process

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} f_{d}(r)& =&\displaystyle \frac{r}{2 \sigma_1 \sigma_2} \exp\left\{- \;\frac {(\sigma^2_1 + \sigma^2_2)r^2}{8\sigma^2_1 \sigma^2_2}\right\} \mbox{BesselI}_0\left\{\frac {(\sigma^2_1 - \sigma^2_2)r^2}{8\sigma^2_1 \sigma^2_2}\right\}. \end{array} \end{aligned} $$
(A.2)

For a different parametrization, σ 1 ≡ σ and σ 2 = c σ σ with c σ > 0, the pdf f d(r) can be rewritten as follows:

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} f_{d}(r)& =&\displaystyle \frac{1}{2 c_{ \sigma} \sigma^2} \exp\left\{- \;\frac {(1 + c_{ \sigma}^2)r^2}{8c_{ \sigma}^2\sigma^2}\right\} \mbox{BesselI}_0\left\{\frac {(1 - c_{ \sigma}^2)r^2}{8c_{ \sigma}^2 \sigma^2}\right\}. \end{array} \end{aligned} $$
(A.3)

Circular-Normal Cluster Process

Here, σ 1 = σ 2. We provide the pdf of R, f R(r) = f d(r) in the following:

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} f_{R}(r)& =&\displaystyle \frac{r}{2 \sigma^2} \exp\left(- \;\frac {r^2}{4 \sigma^2}\right). \end{array} \end{aligned} $$
(A.4)

Skew-Normal Cluster Process

Following the transformation defined in (1),

$$\displaystyle \begin{aligned} \begin{array}{rcl} f_{R, \Theta}(r, \theta)& =&\displaystyle \frac{r}{2 c_0 \sqrt{\pi^2c_1 c_2 - 4 \alpha^2_1 \alpha^2_2}} {}\\ & &\displaystyle \times \:\exp\left(- \: \frac{\pi r^2 [\pi\{\cos^2\theta(c_2 - c_1) + c_1\} + 4 \alpha_1 \alpha_2 \cos \theta \sin \theta ]}{2 c_0 (\pi^2 c_1 c_2 - 4 \alpha^2_1 \alpha^2_1)}\right), \end{array} \end{aligned} $$
(A.5)

where \(c_0=2\sigma ^2/(1+\alpha ^2_1 + \alpha ^2_2)\), \(c_1=1+\alpha ^2_1(1-2/\pi ) + \alpha ^2_2\), and \(c_2=1 + \alpha ^2_1+\alpha ^2_2(1-2/\pi )\). The pdf, f d(r), is analytically complete only in the following two cases. First, \(\alpha ^2_1=\alpha ^2_2\), i.e., (i) α T = α(1, 1), (ii) α T = α(−1, −1), (iii) α T = α(1, −1), or (iv) α T = α(−1, 1), assuming that α > 0. Consequently, c 1 = c 2,

$$\displaystyle \begin{aligned} \begin{array}{rcl} f_{d}(r)& =&\displaystyle \frac{\pi \sqrt{1+2\alpha^2} r}{2\sigma^2 \sqrt{\pi\{\pi(1+2\alpha^2) - 4 \alpha^2\}}} \exp\left[-\;\frac{\{\pi + 2\alpha^2(\pi - 1)\}r^2}{4\sigma^2\{\pi(1+2\alpha^2) - 4\alpha^2\}}\right] \qquad {}\\ & &\displaystyle \times \: \mbox{BesselI}_0\left[\frac{ \alpha^2 r^2}{2\sigma^2\{\pi(1+2\alpha^2) - 4\alpha^2\}}\right], \qquad \end{array} \end{aligned} $$
(A.6)

where \(\mbox{BesselI}_0(x)=\sum _{n=0}^{\infty } (x/2)^{2n}/(n!)^{2}\) is a modified Bessel function of the first kind.

Second, suppose that α = (0, α)T or α = (α, 0)T. Then,

$$\displaystyle \begin{aligned} \begin{array}{rcl} f_{d}(r) & =&\displaystyle \frac{r(1+\alpha^2)}{2\sigma^2\sqrt{(1+\alpha^2)\{1+\alpha^2(1-2/\pi)\}}}\exp\left[-\;\frac{r^2\{1 + \alpha^2(1-1/\pi)\}}{4 \sigma^2\{1+\alpha^2(1-2/\pi)\}}\right]{} \\ & &\displaystyle \times \; \mbox{BesselI}_0\left[\frac{ \alpha^2 r^2}{4 \pi \sigma^2 \{1+\alpha^2(1-2/\pi)\}}\right]. \end{array} \end{aligned} $$
(A.7)

Skew-Elliptical-t Cluster Processes

For x = (x 1, x 2)T,

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} f_{\mathbf{X}}(x_1, x_2) & =&\displaystyle \frac{T_1\left[ \frac{\tau}{\sqrt{1 + 2 (\alpha^2_1 + \alpha^2_2)}} \left\{\frac{\nu +2}{\nu + \left(x^2_1/\sigma^2_1 + x^2_2/\sigma^2_2 \right)/2} \right\}^{1/2};\nu + 2 \right]}{4 \pi\sigma_1 \sigma_2 \left(1 + \frac{x^2_1/\sigma^2_1 + x^2_2/\sigma^2_2}{2\nu}\right)^{(\nu+2)/2} T_1\left\{\frac{\tau}{\sqrt{1+2(\alpha^2_1 + \alpha^2_2)}};\nu\right\}}, \qquad \end{array} \end{aligned} $$
(A.8)

where T 1(⋅;ν) denotes the cdf of the univariate t-distribution with ν degrees of freedom. According to the transformation in (1), the joint distribution of (R,  Θ) is

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} & &\displaystyle f_{R ,\Theta}(r, \theta)\\ & &\displaystyle \quad = \frac{r \: T_1\left[ \frac{\tau}{\sqrt{1 + 2 (\alpha^2_1 + \alpha^2_2)}} \left\{\frac{\nu +2}{\nu + \left(r^2 \cos^2 \theta/\sigma^2_1 + r^2 \sin^2 \theta/\sigma^2_2 \right)/2} \right\}^{1/2};\nu + 2 \right]}{4 \pi\sigma_1 \sigma_2 \left(1 + \frac{r^2 \cos^2 \theta/\sigma^2_1 + r^2 \sin^2 \theta/\sigma^2_2}{2\nu}\right)^{(\nu+2)/2} T_1\left\{\frac{\tau}{\sqrt{1+2(\alpha^2_1 + \alpha^2_2)}};\nu \right\}}. \end{array} \end{aligned} $$
(A.9)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dao, N.A., Genton, M.G. (2021). Skew-Elliptical Cluster Processes. In: Ghosh, I., Balakrishnan, N., Ng, H.K.T. (eds) Advances in Statistics - Theory and Applications. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-62900-7_18

Download citation

Publish with us

Policies and ethics