Skip to main content

The Adaptation of Interior Point Method for Solving the Quadratic Programming Problems Arising in the Assembly of Deformable Structures

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2020)

Abstract

The simulation of the airframe assembly process implies the modelling of contact interaction of compliant parts. As every item in mass production deviates from the nominal, the analysis of the assembly process involves the massive solving of contact problems with varying input data. The contact problem may be formulated in terms of quadratic programming. The bottleneck is the computation time that may be reduced by the use of specially adapted optimization methods. The considered problems have an ill-conditioned Hessian and a sparse matrix of constraints. It is necessary to solve a large number of problems with the same constraint matrix and Hessian. This work considers the primal-dual interior-point method (IPM) and proposes its adaptation to the solving of assembly problems. A method is proposed for choosing a feasible starting point based on a physical interpretation for reducing the number of IPM iterations. The numerical comparison of the approaches to solve a system of linear equations at each iteration of IPM is presented, i.e. an augmented system and a normal equation (its reduction) using various preconditioners. Finally, IPM is compared by computation time with an active-set method, a Newton projection method and Lemkeā€™s method on a number of aircraft assembly problems.

Supported by RFBR, project number 20-38-90023\(\backslash \)20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dā€™Apuzzo, M., De Simone, V., di Serafino, D.: Starting-point strategies for an infeasible potential reduction method. Optim. Lett. 4(1), 131ā€“146 (2010)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Baklanov, S., Stefanova, M., Lupuleac, S.: Newton projection method as applied to assembly simulation. Optim. Methods Softw. 1ā€“28 (2020). https://doi.org/10.1080/10556788.2020.1818079

  3. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28, 149ā€“171 (2004)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. Siam J. Control Optim. 20(2), 221ā€“246 (1982)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  5. Domahidi, A., Zgraggen, A.U., Zeilinger, M.N., Morari, M., Jones, C.N.: Efficient interior point methods for multistage problems arising in receding horizon control. In: IEEE 51st IEEE Conference on Decision and Control (CDC), 668ā€“674. IEEE, Maui (2012)

    Google ScholarĀ 

  6. Fountoulakis, K., Gondzio, J., Zhlobich, P.: Matrix-free interior point method for compressed sensing problems. Math. Program. Comput. 6(1), 1ā€“31 (2013). https://doi.org/10.1007/s12532-013-0063-6

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly quadratic programs. Math. Program. 27(1), 1ā€“33 (1983)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587ā€“601 (2012)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  9. Lin, C., Saigal, R.: An incomplete cholesky factorization for dense symmetric positive definite matrices. BIT Numer. Math. 40, 536ā€“558 (2000). https://doi.org/10.1023/A:1022323931043

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Lupuleac, S., et al.: Software complex for simulation of riveting process: concept and applications. In: SAE Technical Paper, 2016ā€“01-2090 (2016)

    Google ScholarĀ 

  11. Lupuleac, S., et al.: Simulation of the wing-to-fuselage assembly process. J. Manuf. Sci. Eng. 141(6), 061009 (2019)

    ArticleĀ  Google ScholarĀ 

  12. Lupuleac, S., Smirnov, A., Churilova, M., Shinder, J., Bonhomme, E.: Simulation of body force impact on the assembly process of aircraft parts. In: Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition. 2B: Advanced Manufacturing, V02BT02A057. ASME, Salt Lake City, Utah, USA (2019)

    Google ScholarĀ 

  13. Mangoni, D., Tasora, A., Garziera, R.: A primal-dual predictor-corrector interior point method for non-smooth contact dynamics. Comput. Methods Appl. Mech. Eng. 330, 351ā€“367 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. Mazorche, S.R., Herskovits, J., Canelas, A., Guerra, G.M.: Solution of contact problems in linear elasticity using a feasible interior point algorithm for nonlinear complementarity problems. In: Proceedings of the seventh world congress on structural and multidisciplinary optimization, Seoul, South Korea (2007)

    Google ScholarĀ 

  15. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575ā€“601 (1992)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  16. Monteiro, R.D.C., Adler, I.: Interior path following primal-dual algorithms. Part II: convex quadratic programming. Math. Program. 44(1ā€“3), 43ā€“66 (1989)

    ArticleĀ  Google ScholarĀ 

  17. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Helderman-Verlag, Berlin (1988)

    MATHĀ  Google ScholarĀ 

  18. Petukhova, M.V., Lupuleac, S.V., Shinder, Y.K., Smirnov, A.B., Yakunin, S.A., Bretagnol, B.: Numerical approach for airframe assembly simulation. J. Math. Ind. 4(1), 1ā€“12 (2014). https://doi.org/10.1186/2190-5983-4-8

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. Powell, M.J.D.: On the quadratic programming algorithm of Goldfarb and Idnani. In: Cottle, R.W. (ed.) Mathematical Programming Essays in Honor of George B Dantzig Part II. Mathematical Programming Studies, vol. 25. Springer, Berlin (1985)

    Google ScholarĀ 

  20. Stefanova, M., et al.: Convex optimization techniques in compliant assembly simulation. Optim. Eng. 21(4), 1665ā€“1690 (2020). https://doi.org/10.1007/s11081-020-09493-z

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  21. Stefanova, M., Yakunin, S., Petukhova, M., Lupuleac, S., Kokkolaras, M.: An interior-point method-based solver for simulation of aircraft parts riveting. Eng. Optim. 50(5), 781ā€“796 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  22. Tanoh, G., Renard, Y., Noll, D.: Computational experience with an interior point algorithm for large scale contact problems. Optim. Online 10(2), 1ā€“18 (2004). http://www.optimization-online.org/DB_HTML/2004/12/1012.html

  23. Voytov, O., Zorkaltsev, V., Filatov, A.: Oblique path algorithms for solving linear programming problems. Discrete Anal. Oper. Res. 2(2), 17ā€“26 (2001)

    MathSciNetĀ  Google ScholarĀ 

  24. Wright, S.J.: Primal-Dual Interior Point Method. SIAM, Philadelphia (1997)

    BookĀ  Google ScholarĀ 

Download references

Acknowledgments

The authors would like to thank our colleagues from both Airbus SAS and Peter the Great St.Petersburg Polytechnic University for numerous discussions and helpful suggestions. We also want to express our gratitude to Prof. J. Gondzio for his valuable advices that have helped us improve the quality of the research. We thank O.Ā Tarunina and T.Ā Pogarskay for careful reading of our manuscript and giving useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Stefanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stefanova, M., Lupuleac, S. (2020). The Adaptation of Interior Point Method for Solving the Quadratic Programming Problems Arising in the Assembly of Deformable Structures. In: Olenev, N., Evtushenko, Y., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2020. Lecture Notes in Computer Science(), vol 12422. Springer, Cham. https://doi.org/10.1007/978-3-030-62867-3_19

Download citation

Publish with us

Policies and ethics