Skip to main content

Machine Learning in Credit Risk Modeling: Empirical Application of Neural Network Approaches

  • Chapter
  • First Online:
The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success

Part of the book series: Studies in Computational Intelligence ((SCI,volume 935))

Abstract

Motivated by massive development and the ongoing practice of machine learning (ML) approaches in credit risk modeling, this chapter addresses theoretical aspects of machine learning and credit default prediction. This chapter also discusses the properties of mostly used and robust machine learning approaches in credit default prediction. The objective of the chapter does not do empirical analysis, however, to show the practical application of ML approaches in credit default prediction, to the end, this chapter presents an empirical example of trendy classifier neural network approaches on real-world credit datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, H., Zhang, W., Zhang, S.: A novel ensemble method for credit scoring: adaption of different imbalance ratios. Expert Syst. Appl. 98, 105–117 (2018)

    Article  Google Scholar 

  2. Lessmann, S., Baesens, B., Seow, H.-V., Thomas, L.C.: Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. Eur. J. Oper. Res. 247, 124–136 (2015)

    Article  MATH  Google Scholar 

  3. Djeundje, V.B., Crook, J.: Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards. Eur. J. Oper. Res. 271(2), 697–709 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Djeundje, V.B., Crook, J.: Dynamic survival models with varying coefficients for credit risks. Eur. J. Oper. Res. 275(1), 319–333 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhattacharya, A., Wilson, S.P., Soyer, R.: A Bayesian approach to modeling mortgage default and prepayment. Eur. J. Oper. Res. 274(3), 1112–1124 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duffie, D., Singleton, K.J.: Credit Risk, Pricing, Measurements, and Management. Princeton University Press, Princeton, New Jersey (2003)

    Google Scholar 

  7. Jones, S., Hensher, D.A.: Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction. Cambridge University Press, Cambridge, UK; New York (2008)

    Book  Google Scholar 

  8. Hand, D.J., Henley, W.E.: Statistical classification methods in consumer credit. J. R. Stat. Soc.: Ser. A (Stat. Soc.) 160(3), 523–541 (1997)

    Article  Google Scholar 

  9. Rosenberg, E., Gleit, A.: Quantitative methods in credit management: a survey. Oper. Res. 42(4), 589–613 (1994)

    Article  MATH  Google Scholar 

  10. Nikolic, N., Zarkic-Joksimovic, N., Stojanovski, D., Joksimovic, I.: The application of brute force logistic regression to corporate credit scoring models: evidence from Serbian financial statements. Expert Syst. Appl. 40(15), 5932–44 (2013)

    Article  Google Scholar 

  11. Shi, B.F., Chi, G.: A model for recognizing key factors and applications thereof to engineering. Math. Probl. Eng. 1, 368–81 (2014)

    Google Scholar 

  12. Shi, B.F., Wang, J., Qi, J.Y., Cheng, Y.Q.: A novel imbalanced data classification approach based on logistic regression and fisher discriminate. Math. Probl. Eng. 6, 1–12 (2015)

    Google Scholar 

  13. Jones, S.: corporate bankruptcy prediction: a high dimensional analysis. Rev. Acc. Stud. 22, 1366–1422 (2017)

    Article  Google Scholar 

  14. Hung, K., Cheng, H.W., Chen, S., Huang, Y.: Factors that affect credit rating: an application of ordered Probit models. Romanian J. Econ. Forecast. 16(4), 94–108 (2013)

    Google Scholar 

  15. Pai, P.F., Tan, Y.S., Hsu, M.F.: Credit rating analysis by the decision-tree support vector machine with ensemble strategies. Int. J.Fuzzy Syst. 17(4), 521–30 (2015)

    Article  Google Scholar 

  16. Uddin, M.S., Chi, G., Habib, T., Zhou, Y.: An alternative statistical framework for credit default prediction. J. Risk Model Valid. 14(2), 1–36 (2020)

    Google Scholar 

  17. Chi, G., Uddin, M.S., Abedin M.Z., Yuan, K.: Hybrid model for credit risk prediction: an application of neural network approaches. Int. J. Artif. Intell. Tools 28(5), 1950017, 1–33 (2019)

    Google Scholar 

  18. Bai, C.G., Shi, B.F., Liu, F., Sarkis, J.: Banking credit worthiness: Evaluating the complex relationships. Omega 83, 26–33 (2018)

    Article  Google Scholar 

  19. Nie, G.L., Rowe, W., Zhang, L.L., Tian, Y.J., Shi, Y.: Credit card churn forecasting by logistic regression & decision tree. Expert Syst. Appl. 38(12), 73–85 (2011)

    Article  Google Scholar 

  20. Jones, S., Johnstone, D., Wilson, R.: An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. J. Bank. Finan. 56, 72–85 (2015)

    Article  Google Scholar 

  21. Jones, S., Wang T.: Predicting private company failure: a multi-class analysis. J. Int. Finan. Mark. Inst. Money (2019)

    Google Scholar 

  22. Bequé, A., Lessmann, S.: Extreme learning machines for credit scoring: an empirical evaluation. Expert Syst. Appl. 86, 42–53 (2017)

    Article  Google Scholar 

  23. Dahiya, S.: A feature selection enabled hybrid-bagging algorithm for credit risk evaluation. Expert Syst. 34(6), e12217 (2017)

    Article  Google Scholar 

  24. Xia, Y., Liu, C., Da, B., Xie, F.: A novel heterogeneous ensemble credit scor-ing model based on bstacking approach. Expert Syst. Appl. 93, 182–199 (2018)

    Article  Google Scholar 

  25. Sun, J., Li, H.: Dynamic credit scoring using B & B with incremental-SVM-ensemble. Kybernetes 44(4), 518–535 (2015)

    Article  MathSciNet  Google Scholar 

  26. Xu, X., Zhou, C., Wang, Z.: Credit scoring algorithm based on link analysis ranking with support vector machine. Expert Syst. Appl. 36(2), 2625–2632 (2009)

    Article  Google Scholar 

  27. West, D.: Neural network credit scoring models. Comput. Oper. Res. 27(11), 1131–1152 (2000)

    Article  MATH  Google Scholar 

  28. Zhou, L., Si, Y.W., Fujita, H.: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method. Knowl.-Based Syst. 128, 93–101 (2017)

    Article  Google Scholar 

  29. Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random forests. Expert Syst. Appl. 42(10), 4621–4631 (2015)

    Article  Google Scholar 

  30. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1(6), 90–95 (2013)

    Google Scholar 

  31. Yan, A., Nie, X., Wang, K., Wang, M.: Classification of Aurora kinase in- hibitors by self-organizing map (SOM) and support vector machine (SVM). Eur. J. Med. Chem. 61, 73–83 (2013)

    Article  Google Scholar 

  32. Ruppert, D.: The elements of statistical learning: data mining, inference, and prediction. J. Am. Stat. Assoc. 99(466), 567 (2004)

    Article  Google Scholar 

  33. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings-IEEE International Conference on Data Mining. ICDM (2008)

    Google Scholar 

  34. Ben-david, A., Frank, E.: Accuracy of machine learning models versus “hand crafted” expert systems—A credit scoring case study. Expert Syst. Appl. 36(3), 5264–5271 (2009)

    Article  Google Scholar 

  35. Sohn, S.Y., Kim, D.H., Yoon, J.H.: Technology credit scoring model with fuzzy logistic regression. Appl. Soft Comput. J. 43, 150–158 (2016)

    Article  Google Scholar 

  36. Twala, B.: Multiple classifier application to credit risk assessment. Expert Syst. Appl. 37(4), 3326–3336 (2010)

    Article  Google Scholar 

  37. Luo, S., Cheng, B., Hsieh, C.: Prediction model building with cluster- ing-launched classification and support vector machines in credit scoring. Expert Syst. Appl. 36(4), 7562–7566 (2009)

    Article  Google Scholar 

  38. Yu, L., Yue, W., Wang, S., Lai, K.K.: Support vector machine based multi- agent ensemble learning for credit risk evaluation. Expert Syst. Appl. 37(2), 1351–1360 (2010)

    Article  Google Scholar 

  39. AghaeiRad, A., Chen, N., Ribeiro, B.: Improve credit scoring using transfer of learned knowledge from self-organizing map. Neural Comput. Appl. 28(6), 1329–1342 (2017)

    Article  Google Scholar 

  40. Huysmans, J., Baesens, B., Vanthienen, J., Van Gestel, T.: Failure prediction with self organizing maps. Expert Syst. Appl. 30(3), 479–487 (2006)

    Google Scholar 

  41. Thomas, L.C., Crook, J.N., Edelman, D.B.: Credit Scoring and Its Application. Society for Industrial & Applied Mathematics (2002)

    Google Scholar 

  42. Hu, L., Gao, W., Zhao.K., Zhang, P., Wang, F.: Feature selection considering two types of feature relevancy and feature interdependency. Expert Syst. Appl. 93, 423–434 (2018)

    Google Scholar 

  43. Sun, J., Lang, J., Fujita, H., Li, H.: Imbalanceenterprise credit evaluation with DTE-SBD: decision tree ensemble based on SMOTE and Bagging with differentiated sampling rates. Inf. Sci. 425, 76–91 (2018)

    Article  Google Scholar 

  44. Ying, Z., Habib, T., Chi, G., Uddin, M.S.: Real-world credit scoring: a comparative study of statistical and artificial intelligent methods. Int. J. Knowl. Eng. Data Mining 6(1), 32–55 (2019)

    Article  Google Scholar 

  45. Hand, D.J., Jacka, S.D.: Statistics in Finance. Arnold Applications of Statistics, London (1998)

    MATH  Google Scholar 

  46. Anderson, R.: The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation. Oxford University Press, New York (2007). Thomas, L.C., Edelman, D. B., Crook, L. N. 2002. Credit Scoring and Its Applications Philadelphia: Society for Industrial and Applied Mathematics. (41)

    Google Scholar 

  47. Mays, E.: Credit Scoring for Risk Managers: The Handbook for Lenders. Thomson/South-Western, OH, USA (2004)

    Google Scholar 

  48. Thomas, L.C.: Consumer Credit Models: Pricing, Profit, and Portfolios. Oxford University Press, USA (2009)

    Book  Google Scholar 

  49. Thomas, L., Oliver, R., Hand, D.: A survey of the issues in consumer credit modelling research. J. Oper. Res. Soc. 56, 1006–1015 (2005)

    Article  MATH  Google Scholar 

  50. Crook, J., Edelman, D., Thomas, L.: Recent developments in consumer credit risk assessment. Eur. J. Oper. Res. 183, 1447–1465 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Thomas, L.: Operations research in consumer finance: Challenges for operational research. J. Oper. Res. Soc. 61, 41–52 (2009)

    Article  MATH  Google Scholar 

  52. Van Gool, J., Verbeke, W., Sercu, P., Baesens, B.: Credit scoring for microfinance: is it worth it? Int. J. Finan. Econ. 17, 103–123 (2011)

    Article  Google Scholar 

  53. Lewis, E.M.: An Introduction to Credit Scoring. Fair, Isaac & Co., Inc, California (1992)

    Google Scholar 

  54. Bastani, K., Asgari, E., Namavari, H.: Wide and deep learning for peer-to-peer lending. Expert Syst. Appl. 134, 209–224 (2019)

    Google Scholar 

  55. Masmoudi, K., Abid, L., Masmoudi, A.: Credit risk modeling using Bayesian network with a latent variable. Expert Syst. Appl. 127, 157–166 (2019)

    Article  Google Scholar 

  56. Wang, Y., Xu, W.: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decis. Support Syst. 105, 87–95 (2018)

    Article  Google Scholar 

  57. Ala’raj, M., Abbod, F.M.: Classifiers consensus system approach for credit scoring. Knowl. Based Syst. 104, 89–105 (2016)

    Article  Google Scholar 

  58. Malhotra, R., Malhotra, D.K.: Evaluating consumer loans using neural networks. Omega 31, 83–96 (2003)

    Article  Google Scholar 

  59. Thomas, L.C.: A survey of credit and behavioral scoring: forecasting financial risks of lending to customers. Int. J. Forecast. 16(2), 149–72 (2000)

    Article  Google Scholar 

  60. Hand, D.: Modelling consumer credit risk. IMA J. Manag. Math. 12, 139–155 (2001)

    Google Scholar 

  61. Greenspan, A.: Remarks by U.S. Federal Reserve Chairman Alan Greenspan. Speech at the American Bankers Association, Phoenix, Arizona (2002). http://www.federalreserve.gov/boarddocs/speeches//20021007/default.htm. Accessed 29 Jan 2013

  62. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. CoRR, abs/1009.6119 (2010)

    Google Scholar 

  63. Lee, H., Cho, S.: Focusing on non-respondents: Response modeling with novelty detectors. Expert Syst. Appl. 33, 522–530 (2007)

    Article  Google Scholar 

  64. Zhao, Y., Li, B., Li, X., Liu, W. Ren, S.: Customer churn prediction using improved one-class support vector machine. Adv. Data Mining Appl., 731–731(2005)

    Google Scholar 

  65. Haenlein, M., Kaplan, A., Beeser, A.: A model to determine customer lifetime value in a retail banking context. Eur. Manag. J. 25, 221–234 (2007)

    Article  Google Scholar 

  66. Baesens, B., Mues, C., Martens, D., Vanthienen, J.: 50 years of data mining and OR: upcoming trends and challenges. J. Oper. Res. Soc. 60, 16–23 (2009)

    Article  MATH  Google Scholar 

  67. Crook, J.N.: Credit scoring: An overview. Working paper series No. 96/13, British Association, Festival of Science. University of Birmingham, The University of Edinburgh (1996)

    Google Scholar 

  68. Chandler, G.G., Coffman, J.Y.: A comparative analysis of empirical vs. judgemental credit evaluation. J. Retail Bank. 1(2), 15–26 (1979)

    Google Scholar 

  69. Capon, N.: Credit scoring systems: A critical analysis. J. Mark. 46(2), 82–91 (1982)

    Article  Google Scholar 

  70. Al Amari, A.: The credit evaluation process and the role of credit scoring: A case study of Qatar. Ph.D. Thesis, University College Dublin (2002)

    Google Scholar 

  71. Crone, S.F., Finlay, S.: Instance sampling in credit scoring: An empirical study of sample size and balancing. Int. J. Forecast. 28, 224–238 (2012)

    Article  Google Scholar 

  72. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: Unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11, 697–709 (2000)

    Article  Google Scholar 

  73. Fisher, R.A.: The use of multiple measurements in taxonomic problems, Ann. Hum. Genet. 7(2), 179–188 (1936)

    Google Scholar 

  74. Green, S.B., Salkind, N.J., Akey, T.M.: Using SPSS for Windows and Macintosh: Analyzing and Understanding Data. Prentice Hall, New Jersey (2008)

    Google Scholar 

  75. Kamiński, B., Jakubczy, M., Szufel, P.: A framework for sensitivity analysis of decision trees. CEJOR 26(1), 135–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  76. Breiman, L. et al.: Classification and Regression Trees. Wadsworth, Belmont, CA (1984). Thomas, L.C.: Consumer Credit Models: Pricing, Profit, and Portfolios: Pricing, Profit and Portfolios, p. 48. Oxford University Press, Oxford (2009)

    Google Scholar 

  77. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  78. Bao, W., Lianju, N., Yue, K.: Integration of unsupervised and supervised machine learning algorithms for credit risk assessment. Expert Syst. Appl. 128, 301–315 (2019)

    Article  Google Scholar 

  79. Danenas, P., Garsva, G.: Selection of Support Vector Machines based classifiers for credit risk domain. Expert Syst. Appl. 42, 3194–3204 (2015)

    Article  Google Scholar 

  80. Zhou, L., Lai, K.K., Yu, L.: Least squares support vector machines ensemble models for credit scoring. Expert Syst. Appl. 37(1), 127–133 (2010)

    Article  Google Scholar 

  81. Broomhead, D.S., Lowe, D.: Multivariate functional interpolation and adaptive network. Complex Syst. 2, 321–355 (1988)

    MATH  Google Scholar 

  82. Yen, J., Wang, L., Gillespie, C.W.: Improving the interpretability of TSK Fuzzy models by combining global learning and local learning. IEEE Trans. Fuzzy Syst. 6(4), 530–537 (1998)

    Article  Google Scholar 

  83. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  84. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligent. Prentice Hal (1996)

    Google Scholar 

  85. Tanaka, M., Okutomi, M.: A novel inference of a restricted Boltzmann Machine. In: International Conference on Pattern Recognition (ICPR2014), August, 2014

    Google Scholar 

  86. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  87. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  88. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Google Scholar 

  89. Tieleman, T., Hinton, G.: Using fast weights to improve persistent contrastive divergence. In: International Conference on Machine Learning (ICML). ACM, pp. 1033–1040 (2009)

    Google Scholar 

  90. Akkoç, S.: An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. Eur. J. Oper. Res. 222, 168–178 (2012)

    Article  Google Scholar 

  91. Shihabudheen, K.V., Pillai, G.N.: Recent advances in Neuro-fuzzy system: a survey. Knowl.-Based Syst. 152, 136–162 (2018)

    Article  Google Scholar 

  92. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shamsu Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uddin, M.S. (2021). Machine Learning in Credit Risk Modeling: Empirical Application of Neural Network Approaches. In: Hamdan, A., Hassanien, A.E., Razzaque, A., Alareeni, B. (eds) The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success. Studies in Computational Intelligence, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-030-62796-6_25

Download citation

Publish with us

Policies and ethics