Skip to main content

Abstract

Triggered by the increasing number of renewable energy sources, the German electricity grid is undergoing a fundamental change from mono to bidirectional power flow. This paradigm shift confronts grid operators with new problems but also new opportunities. In this chapter we point out some of these problems arising on different layers of the grid hierarchy and sketch mathematical methods to handle them. While the transmission system operator’s main concern is stability and security of the system in case of contingencies, the distribution system operator aims to exploit inherent flexibilities. We identify possible interconnections among the layers to make the flexibility from the distribution grid available within the whole network. Our presented approaches include: the distributed control of energy storage devices on a residential level; transient stability analysis via a new set-based approach; a new clustering-based model-order reduction technique; and a modeling framework for the power flow problem on the transmission level which incorporates new grid technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aschenbruck, T., Esterhuizen, W., Streif, S.: Transient stability analysis of power grids with admissible and maximal robust positively invariant sets. Automatisierungstechnik (2020). In Press

    Google Scholar 

  2. Baumann, M., Grundel, S., Sauerteig, P., Worthmann, K.: Surrogate models in bidirectional optimization of coupled microgrids. Automatisierungstechnik 67(12), 1035–1046 (2019)

    Google Scholar 

  3. Bergen, A.R., Hill, D.J.: A structure preserving model for power system stability analysis. IEEE Trans. Power Appar. Syst. 100(1), 25–35 (1981)

    Article  Google Scholar 

  4. Bienstock, D.: Electrical transmission system cascades and vulnerability. SIAM (2015)

    Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  7. Braun, P., Faulwasser, T., Grüne, L., Kellett, C.M., Weller, S.R., Worthmann, K.: Hierarchical distributed ADMM for predictive control with applications in power networks. IFAC J. Syst. Control 3, 10–22 (2018)

    Article  MathSciNet  Google Scholar 

  8. Braun, P., Grüne, L., Kellett, C.M., Weller, S.R., Worthmann, K.: A distributed optimization algorithm for the predictive control of smart grids. IEEE Trans. Autom. Control 61(12), 3898–3911 (2016)

    Article  MathSciNet  Google Scholar 

  9. Braun, P., Sauerteig, P., Worthmann, K.: Distributed optimization based control on the example of microgrids. In: Blondin, M.J., Pardalos, P.M., Saéz, J. (eds.), Computational Intelligence and Optimization Methods for Control Engineering, vol. 150, Springer Optmization and Its Applications, pp. 173–200. Springer, Berlin (2019)

    Google Scholar 

  10. Cain, M.B., O’Neill, R.P., Castillo, A.: History of optimal power flow and formulations, optimal power flow paper 1. Federal Energy Regulatory Comission (2012)

    Google Scholar 

  11. Carpentier, J.: Contribution to the economic dispatch problem. Bulletin de la Societe Francoise des Electriciens 3(8), 431–447 (1962)

    Google Scholar 

  12. Chan, K.W., Cheung, C.H., Su, H.T.: Time domain simulation based transient stability assessment and control. Proc. Internat. Conf. Power Syst. Technol. 3, 1578–1582 (2002)

    Article  Google Scholar 

  13. Chiang, H.D.: Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications. Wiley, New york (2011)

    Google Scholar 

  14. De Dona, J., Lévine, J.: On barriers in state and input constrained nonlinear systems. SIAM J. Control Optim. 51(4), 3208–3234 (2013)

    Article  MathSciNet  Google Scholar 

  15. El-Guindy, A., Chen, Y.C., Althoff, M.: Compositional transient stability analysis of power systems via the computation of reachable sets. In: American Control Conference (ACC), pp. 2536–2543 (2017)

    Google Scholar 

  16. Emmerich, M.T., Deutz, A.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat. Comput. 17, 585–609 (2018)

    Article  MathSciNet  Google Scholar 

  17. Esterhuizen, W., Aschenbruck, T., Streif, S.: On maximal robust positively invariant sets in constrained nonlinear systems. Automatica 119, 109044 (2020)

    Google Scholar 

  18. European Network of Transmission System Operators for Electricity (ENTSO-E): Common Grid Model Exchange Specification (CGMES) (2017)

    Google Scholar 

  19. Grundel, S., Sauerteig, P., Worthmann, K.: Surrogate models for coupled microgrids. In: Faragó, I., Izsák, F., Simon, P. (eds.) Progress in Industrial Mathematics at ECMI 2018, vol. 30, pp. 477–483 (2019)

    Google Scholar 

  20. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control. Theory and Algorithms, 2nd edn. Springer, Berlin (2017)

    Book  Google Scholar 

  21. Guggilam, S.S., Dall’Anese, E., Chen, Y.C., Dhople, S.V., Giannakis, G.B.: Scalable optimization methods for distributed networks with high PV integration. IEEE Trans. Smart Grid 7(4), 2061–2070 (2016)

    Article  Google Scholar 

  22. Hans, C.A., Braun, P., Raisch, J., Grüne, L., Reincke-Collon, C.: Hierarchical distributed model predictive control of interconnected microgrids. IEEE Trans. Sustain. Energy 10(1), 407–416 (2019)

    Article  Google Scholar 

  23. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)

    Article  MathSciNet  Google Scholar 

  24. Houska, B., Frasch, J.V., Diehl, M.: An augmented Lagrangian based algorithm for distributed nonconvex optimization. SIAM J. Optim. 26(2), 1101–1127 (2016)

    Article  MathSciNet  Google Scholar 

  25. Houska, B., Jiang, Y.: Distributed Optimization and Control with ALADIN, p. (provisionally accepted). Springer. http://faculty.sist.shanghaitech.edu.cn/faculty/boris/AladinChapter.html

  26. Jiang, Y., Sauerteig, P., Houska, B., Worthmann, K.: Distributed Optimization using ALADIN for Model Predictive Control in Smart Grids. IEEE Trans. Control Syst. Technol. https://doi.org/10.1109/TCST.2020.3033010

  27. Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., Vittal, V.: Definition and classification of power system stability. IEEE Trans. Power Syst. 19(2), 1387–1401 (2004)

    Google Scholar 

  28. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  29. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  30. Mlinarić, P., Grundel, S., Benner, P.: Efficient model order reduction for multi-agent systems using QR decomposition-based clustering. In: 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, pp. 4794–4799 (2015)

    Google Scholar 

  31. Momoh, J.: Electric Power System Applications of Optimization. Power Engineering (Willis). CRC Press (2017)

    Google Scholar 

  32. Monshizadeh, N., Trentelman, H.L., Çamlibel, M.K.: Projection-based model reduction of multi-agent systems using graph partitions. IEEE Trans. Control Netw. Syst. 1(2), 145–154 (2014)

    Article  MathSciNet  Google Scholar 

  33. Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T.: Spontaneous synchrony in power-grid networks. Nat. Phys. 9(3), 191–197 (2013)

    Article  Google Scholar 

  34. Mühlpfordt, T., Hagenmeyer, V., Faulwasser, T.: Uncertainty quantification for optimal power flow problems. Proc. Appl. Math. Mech. 19(SI) (2019)

    Google Scholar 

  35. Nishikawa, T., Motter, A.E.: Comparative analysis of existing models for power-grid synchronization. New J. Phys. 17(1), 015012 (2015)

    Google Scholar 

  36. Ratnam, E.L., Weller, S.R., Kellett, C.M., Murray, A.T.: Residential load and rooftop PV generation: an Australian distribution network dataset. In: International Journal of Sustainable Energy (2015)

    Google Scholar 

  37. Rawlings, J.B., Mayne, D.Q., Diehl, M.: Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing (2017)

    Google Scholar 

  38. Riverso, S., Boem, F., Ferrari-Trecate, G., Parisini, T.: Plug-and-play voltage and frequency control of islanded microgrids with meshed topology. IEEE Trans. Smart Grid 6(3), 1176–1184 (2015)

    Article  Google Scholar 

  39. Sauerteig, P., Baumann, M., Dickert, J., Grundel, S., Worthmann, K.: Reducing Transmission Losses via Reactive Power Control. In: Göttlich, S., Herty,M., Milde, A. (eds.) Mathematical MSO for Power Engineering and Management, Mathematics in Industry. Springer (2021)

    Google Scholar 

  40. Sauerteig, P., Jiang, Y., Houska, B., Worthmann, K.: Distributed Control Enforcing Group Sparsity in Smart Grids. In: Proceedings of the 21st IFAC World Congress. Berlin, Germany (2020)

    Google Scholar 

  41. Sauerteig, P., Worthmann, K.: Towards multiobjective optimization and control of smart grids. Optim. Control Appl. Methods (OCAM) 41, 128–145 (2020)

    Article  MathSciNet  Google Scholar 

  42. Union for the Co-ordination of Transmission of Electricity (UCTE): UCTE data exchange format for load flow and three phase short circuit studies (2007)

    Google Scholar 

  43. Varaiya, P., Wu, F.F., Chen, R.L.: Direct methods for transient stability analysis of power systems: recent results. Proc. IEEE 73(12), 1703–1715 (1985)

    Article  Google Scholar 

  44. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming. Theory, Algorithms, and Applications. Springer US (2000)

    Google Scholar 

  45. Worthmann, K., Kellett, C.M., Braun, P., Grüne, L., Weller, S.R.: Distributed and decentralized control of residential energy systems incorporating battery storage. IEEE Trans. Smart Grid 6(4), 1914–1923 (2015)

    Article  Google Scholar 

  46. Worthmann, K., Kellett, C.M., Grüne, L., Weller, S.R.: Distributed control of residential energy systems using a market maker. IFAC Proc. Vol. 47(3), 11641–11646 (2014)

    Article  Google Scholar 

  47. Xiaoping, L., Ming, D., Jianghong, H., Pingping, H., Yali, P.: Dynamic economic dispatch for microgrids including battery energy storage. In: The 2nd International Symposium on Power Electronics for Distributed Generation Systems, pp. 914–917 (2010)

    Google Scholar 

  48. Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Spectral relaxation for k-means clustering. In: NIPS, pp. 1057–1064 (2001)

    Google Scholar 

  49. Zhu, J.: Otimization of Power System Operation. IEEE Press Series on Power Engineering. Wiley, New York (2009)

    Book  Google Scholar 

  50. Zimmermann, J., Tatarenko, T.: Optimales Energie-Management über verteilte, beschränkte Gradientenverfahren. Automatisierungstechnik 67(11), 922–935 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors collaborate within the project KONSENS: Konsistente Optimierung uNd Stabilisierung Elektrischer NetzwerkSysteme funded by the German Federal Ministry of Education and Research (BMBF, grants 05M18OCA, 05M18SIA, and 05M18EVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Filipecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aschenbruck, T. et al. (2021). Optimization and Stabilization of Hierarchical Electrical Networks. In: Göttlich, S., Herty, M., Milde, A. (eds) Mathematical Modeling, Simulation and Optimization for Power Engineering and Management. Mathematics in Industry, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-62732-4_8

Download citation

Publish with us

Policies and ethics