Skip to main content

Energy-Efficient High Temperature Processes via Shape Optimization

  • Chapter
  • First Online:
Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 34))

Abstract

We consider mathematical models and optimization techniques for a melting furnace in phosphate production. In this high temperature process radiation plays a predominant role. The main design goals are a reduction of the energy consumption as well as the product quality. In particular, we are going to focus on shape optimization techniques for an improved design of the melting furnace, which will rely on a hierarchy of models incorporating the multi-physics of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albring, T., Sagebaum, M., Gauger, N.R.: A consistent and robust discrete adjoint solver for the SU2 framework – validation and application. In: New Results in Numerical and Experimental Fluid Mechanics X, pp. 77–86. Springer (2016)

    Google Scholar 

  2. ANSYS\({\textregistered }\) Fluent, Release 19.3: Help System, Fluent Theory Guide. ANSYS, Inc. (2019)

    Google Scholar 

  3. Arima, T.: Numerical methods for chemically reacting fluid flow computation under low-mach number approximation. Tokyo J. Math. 29(1), 167–198 (2006). https://doi.org/10.3836/tjm/1166661873

  4. Blauth, S., Leithäuser, C., Pinnau, R.: Model hierarchy for the shape optimization of a microchannel cooling system (2019)

    Google Scholar 

  5. Chui, E., Raithby, G.: Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer. Heat Transf. 23(3), 269–288 (1993)

    Article  Google Scholar 

  6. Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: SU2: an open-source suite for multiphysics simulation and design. Aiaa J. 54(3), 828–846 (2016)

    Article  Google Scholar 

  7. Ferziger, J.H., Peric, M.: Numerische Strömungsmechanik. Springer (2008)

    Google Scholar 

  8. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2001). https://doi.org/10.1017/CBO9780511546754

  9. Frank, M.: Approximate models for radiative transfer. Bulletin of the Institute of Mathematics Academia Sinica 2, 409–432 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Gangl, P., Langer, U., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37(6), B1002–B1025 (2015). https://doi.org/10.1137/15100477X

  11. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, vol. 105. Siam (2008)

    Google Scholar 

  12. Herty, M., Pinnau, R., Thömmes, G.: Asymptotic and discrete concepts for optimal control in radiative transfer. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 87(5), 333–347 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT Numer. Math. 55(2), 459–485 (2015). https://doi.org/10.1007/s10543-014-0515-z

  14. Hohmann, R., Leithäuser, C.: Shape optimization of a polymer distributor using an Eulerian residence time model. SIAM J. Sci. Comput. 41(4), B625–B648 (2019). https://doi.org/10.1137/18M1225847

  15. Kossiga, A., Béchet, F., Siedow, N., Lochegnies, D.: Influence of radiative heat transfer model on the computation of residual stresses in glass tempering process. Int. J. Appl. Glass Sci. (2017). https://doi.org/10.1111/ijag.12335

  16. Larsen, E.W., Thömmes, G., Klar, A., Seaïd, M., Götz, T.: Simplified \({P}_n\) approximations to the equations of radiative heat transfer and applications. J. Comput. Phys. 183, 652–675 (2002)

    Article  MathSciNet  Google Scholar 

  17. Leithäuser, C., Pinnau, R., Feßler, R.: Approximate controllability of linearized shape-dependent operators for flow problems. ESAIM: COCV 23(3), 751–771 (2017). https://doi.org/10.1051/cocv/2016012

  18. Leithäuser, C., Pinnau, R., Feßler, R.: Designing polymer spin packs by tailored shape optimization techniques. Optim. Eng. 19(3), 733–764 (2018). https://doi.org/10.1007/s11081-018-9396-3

  19. Leithäuser, C., Pinnau, R., Feßler, R.: Shape design for polymer spin packs: modeling, optimization and validation. J. Math. Ind. 8 (2018). https://doi.org/10.1186/s13362-018-0055-2

  20. Logg, A., Wells, N.G., J, H.: DOLFIN: a C++/Python Finite Element Library, chap. 10. Springer (2012)

    Google Scholar 

  21. Marx, T., Dietrich, N., Pinnau, R.: Shape optimization for the SP1–model for convective radiative heat transfer. In: Pinnau, R., Gauger, N., Klar, A. (eds.) Modeling, Simulation and Optimization in the Health- and Energy-Sector. Springer (2020)

    Google Scholar 

  22. Modest, M.: Radiative Heat Transfer. Academic Press, San Diego (2003)

    Book  Google Scholar 

  23. Murthy, J., Mathur, S.: Finite volume method for radiative heat transfer using unstructured meshes. J. Thermophys. Heat Transf. 12(3), 313–321 (1998)

    Article  Google Scholar 

  24. Pinnau, R.: Analysis of optimal boundary control for radiative heat transfer modeled by the \({SP}_1\)-system. Commun. Math. Sci. 5, 951–969 (2007)

    Article  MathSciNet  Google Scholar 

  25. Sagebaum, M., Gauger, N.R., Naumann, U., Lotz, J., Leppkes, K.: Algorithmic differentiation of a complex c++ code with underlying libraries. In: ICCS, pp. 208–217 (2013)

    Google Scholar 

  26. Schmidt, S.: Weak and strong form shape hessians and their automatic generation. SIAM J. Sci. Comput. 40(2), C210–C233 (2018). https://doi.org/10.1137/16M1099972

  27. Schmidt, S., Schulz, V.: Shape derivatives for general objective functions and the incompressible Navier-Stokes. Control Cybern. 39 (2010)

    Google Scholar 

  28. Schulz, V., Siebenborn, M.: Computational comparison of surface metrics for PDE constrained shape optimization. Comput. Meth. Appl. Math. 16, 485–496 (2016)

    Article  MathSciNet  Google Scholar 

  29. Schulz, V., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov-Poincaré-type metrics. SIAM J. Optim. 26, 2800–2819 (2016)

    Article  MathSciNet  Google Scholar 

  30. Seaid, M., Frank, M., Klar, A., Pinnau, R., Thömmes, G.: Efficient numerical methods for radiation in gas turbines. J. Comput. Appl. Math. 170(1), 217–239 (2004)

    Article  MathSciNet  Google Scholar 

  31. Seaid, M., Klar, A., Pinnau, R.: Numerical solvers for radiation and conduction in high temperature gas flows. Flow Turbul. Combust. 75, 173–190 (2005). https://doi.org/10.1007/s10494-005-8589-y

    Article  MATH  Google Scholar 

  32. Sokolowsky, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer (1992)

    Google Scholar 

  33. Sturm, K.: Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption. SIAM J. Control Optim. 53, 2017–2039 (2015)

    Article  MathSciNet  Google Scholar 

  34. Sturm, K., Eigel, M.: Reproducing kernel Hilbert spaces and variable metric algorithms in PDE constrained shape optimisation. Optim. Methods Softw. (2016). https://doi.org/10.1080/10556788.2017.1314471

  35. Sturm, K., Laurain, A.: Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Model. Numer. Anal. 50 (2015). https://doi.org/10.1051/m2an/2015075

  36. Welker, K.: Efficient PDE constrained shape optimization in shape spaces. Ph.D. thesis (2016)

    Google Scholar 

  37. Wilcox, D.C., et al.: Turbulence Modeling for CFD, vol. 2. DCW industries La Canada, CA (1998)

    Google Scholar 

  38. Zobel, D.: Verfahrensentwicklung und Technische Sicherheit in der Anorganischen Phosphorchemie. Expert Verlag (2018)

    Google Scholar 

Download references

Acknowledgements

This project has been supported by the Federal Ministry of Education and Research (BMBF) under grant numbers 05M18UKA and 05M18AMA. The authors are indebted to the other project members for their input and support in finalizing this article. In particular, they thank N. Dietrich, N. Gauger, Th. Marx, E. Özkaya, R. Sanchez (all at TU Kaiserslautern), as well as R. Feßler, N. Siedow (Fraunhofer ITWM, Kaiserslautern) and R. Tänzler (ICL Ladenburg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Pinnau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leithäuser, C., Pinnau, R. (2021). Energy-Efficient High Temperature Processes via Shape Optimization. In: Göttlich, S., Herty, M., Milde, A. (eds) Mathematical Modeling, Simulation and Optimization for Power Engineering and Management. Mathematics in Industry, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-62732-4_6

Download citation

Publish with us

Policies and ethics