Skip to main content

Probabilistic Analysis of Solar Power Supply Using D-Vine Copulas Based on Meteorological Variables

  • Chapter
  • First Online:
Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 34))

Abstract

Solar power generation at solar plants is a strongly fluctuating non-deterministic variable depending on many influencing factors. In general, it is not clear which and how certain variables influence solar power supply at feed-in points in a distribution network. Therefore, analyzing the dependence structure of measured solar power supply and other variables is very informative and can be helpful in designing probabilistic prediction models. In this paper multivariate D-vine copulas are fitted to investigate the relationship between solar power supply and certain meteorological variables in the current time period of one hour length as well as solar power supply in previous time periods. The meteorological variables considered in this analysis are global horizontal irradiation, temperature, wind speed, humidity, precipitation and pressure. By applying parametric D-vine copulas useful insight is gained into the dependence structure of solar power supply and the considered meteorological variables. The main goal lies in determining suitable explanatory variables for the design of probabilistic prediction models for solar power supply at single feed-in points and analyzing their impact on the validation of conditional level-crossing probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44(2), 182–198 (2009)

    Google Scholar 

  2. Almeida, M.P., Perpinan, O., Narvarte, L.: PV power forecast using a nonparametric PV model. Solar Energy 115, 354–368 (2015)

    Article  Google Scholar 

  3. Andrade, J.R., Bessa, R.J.: Improving renewable energy forecasting with a grid of numerical weather predictions. IEEE Trans. Sustain. Energy 8(4), 1571–1580 (2017)

    Article  Google Scholar 

  4. Balasubramanian, T.N., Appadurai, A.N.: Climate policy. In: Venkatramanan, V., Shah, S., Prasad, R. (eds.) Global Climate Change and Environmental Policy, pp. 37–54. Springer (2020)

    Google Scholar 

  5. Bayindir, R., Colak, I., Fulli, G., Demirtas, K.: Smart grid technologies and applications. Renew. Sustain. Energy Rev. 66, 499–516 (2016)

    Article  Google Scholar 

  6. Bessa, R.J.: On the quality of the Gaussian copula for multi-temporal decision-making problems. In: 2016 Power Systems Computation Conference (PSCC), pp. 1–7 (2016)

    Google Scholar 

  7. Copernicus Atmosphere Monitoring Service: Open source global horizontal irradiation data. http://www.soda-pro.com/web-services/radiation/cams-radiation-service

  8. Golestaneh, F., Gooi, H.B.: Multivariate prediction intervals for photovoltaic power generation. In: 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), pp. 1–5. IEEE (2017)

    Google Scholar 

  9. Golestaneh, F., Gooi, H.B., Pinson, P.: Generation and evaluation of space-time trajectories of photovoltaic power. Appl. Energy 176, 80–91 (2016)

    Article  Google Scholar 

  10. Haghi, H.V., Lotfifard, S.: Spatiotemporal modeling of wind generation for optimal energy storage sizing. IEEE Trans. Sustain. Energy 6(1), 113–121 (2014)

    Article  Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer (2009)

    Google Scholar 

  12. Huang, J., Perry, M.: A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. Int. J. Forecast. 32(3), 1081–1086 (2016)

    Article  Google Scholar 

  13. Joe, H.: Dependence Modeling with Copulas. Chapman and Hall/CRC (2014)

    Google Scholar 

  14. Karimi, M., Mokhlis, H., Naidu, K., Uddin, S., Bakar, A.: Photovoltaic penetration issues and impacts in distribution network - a review. Renew. Sustain. Energy Rev. 53, 594–605 (2016)

    Article  Google Scholar 

  15. Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer (2008)

    Google Scholar 

  16. Leisch, F.: A general framework for finite mixture models and latent glass regression in R. J. Stat. Softw. 11(8), 1–18 (2004)

    Article  Google Scholar 

  17. von Loeper, F., Schaumann, P., de Langlard, M., Hess, R., Bäsmann, R., Schmidt, V.: Probabilistic prediction of solar power supply to distribution networks, using forecasts of global horizontal irradiation. Solar Energy 203, 145–156 (2020)

    Google Scholar 

  18. Lu, Q., Hu, W., Min, Y., Yuan, F., Gao, Z.: Wind power uncertainty modeling considering spatial dependence based on pair-copula theory. In: PES General Meeting| Conference & Exposition, pp. 1–5. IEEE (2014)

    Google Scholar 

  19. Modern-Era Retrospective Analysis for Research and Applications Version 2: Open source meteorlogical data. https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

  20. Nelsen, R.B.: An Introduction to Copulas. Springer (2006)

    Google Scholar 

  21. Papaefthymiou, G., Kurowicka, D.: Using copulas for modeling stochastic dependence in power system uncertainty analysis. IEEE Trans. Power Syst. 24, 40–49 (2009)

    Article  Google Scholar 

  22. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2014). http://www.R-project.org/

  23. Rässler, S.: Statistical Matching: A frequentist Theory, Practical Applications, and Alternative Bayesian Approaches. Springer (2012)

    Google Scholar 

  24. SolarPower Europe: Global market outlook 2018–2022 (2017). http://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdf

  25. Stadtwerke Ulm/Neu-Ulm Netze GmbH: test areas smart grids. https://www.ulm-netze.de/unternehmen/projekt-smart-grids

  26. Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J., Hu, Z.: Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 1(4), 38–46 (2015)

    Article  Google Scholar 

  27. Wilks, D.S.: Statistical Methods in the Atmospheric Sciences. Academic Press (2011)

    Google Scholar 

  28. Zhang, B., Dehghanian, P., Kezunovic, M.: Spatial-temporal solar power forecast through use of gaussian conditional random fields. In: IEEE Power and Energy Society General Meeting (PESGM), vol. IEEE, pp. 1–5 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freimut von Loeper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Loeper, F., Kirstein, T., Idlbi, B., Ruf, H., Heilscher, G., Schmidt, V. (2021). Probabilistic Analysis of Solar Power Supply Using D-Vine Copulas Based on Meteorological Variables. In: Göttlich, S., Herty, M., Milde, A. (eds) Mathematical Modeling, Simulation and Optimization for Power Engineering and Management. Mathematics in Industry, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-62732-4_3

Download citation

Publish with us

Policies and ethics