Skip to main content

Anomaly Detection in an Embedded System

  • Chapter
  • First Online:
Hardware Supply Chain Security

Abstract

Embedded systems, especially those that are mission-critical or safety-critical, require a higher level of dependability. Error detection is first step and a vital aspect in fault tolerance because a processor cannot tolerate a problem that it is not aware of. Even if the processor cannot recover from a detected fault, it can still alert the user that an error has occurred and halt. Thus, error detection provides, at the minimum, a measure of safety. Online error detection is the ability to detect any form of violation of system specifications during runtime. One of the techniques that has been applied for online error detection is anomaly detection. This section will discuss the techniques for anomaly detection and a case study on using a single hardware performance counter for early detection and prediction of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.F.B. Abbas, S.P. Kadiyala, A. Prakash, T. Srikanthan, Y.L. Aung, Hardware performance counters based runtime anomaly detection using SVM, in TRON Symposium (TRONSHOW) (2017) , pp. 1–9. https://doi.org/10.23919/TRONSHOW.2017.8275073

  2. S. Ahmad, A. Lavin, S. Purdy, Z. Agha, Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262(Supplement C), 134–147 (2017). https://doi.org/10.1016/j.neucom.2017.04.070. Online Real-Time Learning Strategies for Data Streams

  3. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    Article  MathSciNet  Google Scholar 

  4. P.C. Anderson, F.J. Rich, S. Borisov, Mapping the South Atlantic Anomaly continuously over 27 years. J. Atmos. Sol. Terr. Phys. 177, 237–246 (2018). https://doi.org/10.1016/j.jastp.2018.03.015. Dynamics of the Sun-Earth System: Recent Observations and Predictions

  5. A. Avizienis, Fundamental concepts of dependability. Comput. Oper. Res., 1–20 (2012)

    Google Scholar 

  6. M.B. Bahador, M. Abadi, A. Tajoddin, HPCMalHunter: behavioral malware detection using hardware performance counters and singular value decomposition, in Proceedings of the 4th International Conference on Computer and Knowledge Engineering (ICCKE) (2014), pp. 703–708. https://doi.org/10.1109/ICCKE.2014.6993402

  7. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882

  8. C. Chatfield, Prediction Intervals for Time-Series Forecasting (Springer, Boston, 2001), pp. 475–494. https://doi.org/10.1007/978-0-306-47630-3_21

    Google Scholar 

  9. E. Chavis, H. Davis, Y. Hou, M. Hicks, S.F. Yitbarek, T. Austin, V. Bertacco, SNIFFER: a high-accuracy malware detector for enterprise-based systems, in Proceedings of the IEEE 2nd International Verification and Security Workshop (IVSW) (2017), pp. 70–75. https://doi.org/10.1109/IVSW.2017.8031547

  10. M. Chiappetta, E. Savas, C. Yilmaz, Real time detection of cache-based side-channel attacks using hardware performance counters. Appl. Soft Comput. 49(C), 1162–1174 (2016). https://doi.org/10.1016/j.asoc.2016.09.014

    Article  Google Scholar 

  11. C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C.M. (Burguiére), J. Reineke, B. Triquet, R. Wilhelm, Predictability considerations in the design of multi-core embedded systems, in Embedded Real Time Software and Systems Conference (2010), pp. 36–42

    Google Scholar 

  12. A. DeHon, N. Carter, H. Quinn, Final report of CCC cross-layer reliability visioning study, in Full Report of Computing Community Consortium (CCC) Visioning Study. Computing Community Consortium (CCC) Visioning Study, United States (2011). http://www.relxlayer.org/FinalReport?action=AttachFile&do=view&target=final_report.pdf

    Google Scholar 

  13. J. Dromard, G. Roudiére, P. Owezarski, Online and scalable unsupervised network anomaly detection method. IEEE Trans. Netw. Serv. Manag. 14(1), 34–47 (2017). https://doi.org/10.1109/TNSM.2016.2627340

    Article  Google Scholar 

  14. N.H. Duong, H.D. Hai, A semi-supervised model for network traffic anomaly detection, in Proceedings of the 17th International Conference on Advanced Communication Technology (ICACT) (2015), pp. 70–75. https://doi.org/10.1109/ICACT.2015.7224759

  15. A. Fog, 4. Instruction Tables. Software Optimization Resources. (Technical University of Denmark, Denmark, 2018). https://www.agner.org/optimize/instruction_tables.pdf

  16. W.A. Fuller, Introduction to Statistical Time Series (Wiley, New York, 1976)

    MATH  Google Scholar 

  17. G. Galvas, Time Series Forecasting used for Real-time Anomaly Detection on Websites. Master’s thesis (Faculty of Science, Vrije Universiteit, Vrije, 2016)

    Google Scholar 

  18. M. Goldstein, S. Uchida, A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLOS One, 1–31 (2016). https://doi.org/10.1371/journal.pone.0152173

  19. M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown, MiBench: a free, commercially representative embedded benchmark suite, in Proceedings of the IEEE International Workshop Workload Characterization (WWC-4), WWC ’01 (IEEE Computer Society, Washington, 2001), pp. 3–14. https://doi.org/10.1109/WWC.2001.15

  20. R.S. Hammer, D.T. McBride, V.B. Mendiratta, Comparing reliability and security: concepts, requirements and techniques. Bell Labs Tech. J. 12(3), 65–78 (2007). https://doi.org/10.1002/BLTJ.20250

    Article  Google Scholar 

  21. D.J. Hill, B.S. Minsker, Anomaly detection in streaming environmental sensor data: a data-driven modeling approach. Environ. Model. Softw. 25(9), 1014–1022 (2010). https://doi.org/10.1016/j.envsoft.2009.08.010

    Article  Google Scholar 

  22. R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, 2nd edn. (OTexts, Melbourne, 2019). https://otexts.com/fpp2

  23. M.S. Islam, W. Khreich, A. Hamou-Lhadj, Anomaly detection techniques based on kappa-pruned ensembles. IEEE Trans. Reliab. 67(1), 212–229 (2018). https://doi.org/10.1109/TR.2017.2787138

    Article  Google Scholar 

  24. R. Iyer, Z. Kalbarczyk, W. Gu, Benchmarking the Operating System against Faults Impacting Operating System Functions (Wiley, New York, 2008), pp. 311–339. https://doi.org/10.1002/9780470370506.ch15. http://dx.doi.org/10.1002/9780470370506.ch15

  25. Y. Kawachi, Y. Koizumi, N. Harada, Complementary set variational autoencoder for supervised anomaly detection, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018), pp. 2366–2370. https://doi.org/10.1109/ICASSP.2018.8462181

  26. A. Kumar, A. Srivastava, N. Bansal, A. Goel, Real time data anomaly detection in operating engines by statistical smoothing technique, in Proceedings of the 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2012), pp. 1–5. https://doi.org/10.1109/CCECE.2012.6334876

  27. E.W.L. Leng, M. Zwolinski, B. Halak, Hardware performance counters for system reliability monitoring, in Proceedings of the IEEE 2nd International Verification and Security Workshop (IVSW), pp. 76–81 (2017). https://doi.org/10.1109/IVSW.2017.8031548

  28. N.G. Leveson, C.S. Turner, An investigation of the Therac-25 accidents. Computer 26(7), 18–41 (1993). https://doi.org/10.1109/MC.1993.274940

    Article  Google Scholar 

  29. J.L. Lions, ARIANE 5—-flight 501 failure, in Failure report, Independent Inquiry Board (1996). https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

  30. S. Makridakis, E. Spiliotis, V. Assimakopoulos, Statistical and machine learning forecasting methods: concerns and ways forward. PLoS ONE 13(3), e0194889. PLoS ONE (2018). https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194889&type=printable

  31. D.C. Montgomery, C.L. Jennings, M. Kulahci, Introduction to Time Series Analysis and Forecasting. Wiley Series in Probability and Statistics. (Wiley, New York, 2011). https://books.google.co.uk/books?id=-qaFi0oOPAYC

  32. NIST: Nist/sematech e-handbook of Statistical Methods (2013). http://www.itl.nist.gov/div898/handbook/

  33. K. Parasyris, G. Tziantzoulis, C.D. Antonopoulos, N. Bellas, GemFI: a fault injection tool for studying the behavior of applications on unreliable substrates, in Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (2014), pp. 622–629. https://doi.org/10.1109/DSN.2014.96

  34. F. Petropoulos, S. Makridakis, V. Assimakopoulos, K. Nikolopoulos, ’Horses for Courses’ in demand forecasting. Eur. J. Oper. Res. 237, 152–163 (2014). https://doi.org/10.1016/j.ejor.2014.02.036

  35. N.S. Pillai, X.L. Meng, An unexpected encounter with Cauchy and Lèvy. Ann. Statist. 44(5), 2089–2097 (2016). https://doi.org/10.1214/15-AOS1407

    Article  MathSciNet  Google Scholar 

  36. Y. Sasaka, T. Ogawa, M. Haseyama, A novel framework for estimating viewer interest by unsupervised multimodal anomaly detection. IEEE Access 6, 8340–8350 (2018). https://doi.org/10.1109/ACCESS.2018.2804925

    Article  Google Scholar 

  37. H. Song, Z. Jiang, A. Men, B. Yang, A hybrid semi-supervised anomaly detection model for high-dimensional data. Comput. Intell. Neurosci. 2017, 1–9 (2017). https://doi.org/10.1155/2017/8501683

    Article  Google Scholar 

  38. L. Song, H. Liang, T. Zheng, Real-time anomaly detection method for space imager streaming data based on HTM algorithm, in Proceedings of the IEEE 19th International Symposium on High Assurance Systems Engineering (HASE) (2019), pp. 33–38. https://doi.org/10.1109/HASE.2019.00015

  39. t-distribution table. http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

  40. S. Teoh, RM142m RazakSAT Faulty After Just One Year, Says Federal Auditor (The Malaysian Insider, Malaysian, 2011)

    Google Scholar 

  41. M. Toledano, I. Cohen, Y. Ben-Simhon, I. Tadeski, Real-time anomaly detection system for time series at scale, in Proceedings of Machine Learning Research. Workshop on Anomaly Detection in Finance (PMLR), vol. 71 (2018), pp. 56–65

    Google Scholar 

  42. V. Vercruyssen, W. Meert, G. Verbruggen, K. Maes, R. Bäumer, J. Davis, Semi-supervised anomaly detection with an application to water analytics, in Proceedings of the IEEE International Conference on Data Mining (ICDM) (2018), pp. 527–536. https://doi.org/10.1109/ICDM.2018.00068

  43. N. Wehn, Reliability: a cross-disciplinary and cross-layer approach, in Asian Test Symposium (2011), pp. 496–497

    Google Scholar 

  44. L.L. Woo, M. Zwolinski, B. Halak, Early detection of system-level anomalous behaviour using hardware performance counters, in Design, Automation Test in Europe Conference Exhibition (DATE) (2018), pp. 485–490. https://doi.org/10.23919/DATE.2018.8342057

  45. Y. Yu, Y. Zhu, S. Li, D. Wan, Time series outlier detection based on sliding window prediction. Math. Probl. Eng. 2014(879736), Article ID 879736 (2014). https://doi.org/10.1155/2014/879736

  46. J. Zhao, L. Xu, L. Liu, Equipment fault forecasting based on ARMA model, in Proceedings of the International Conference on Mechatronics and Automation (2007), pp. 3514–3518. https://doi.org/10.1109/ICMA.2007.4304129

Download references

Acknowledgements

This work has been partly supported by Microsoft Azure Research Award number CRM: 0518905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Leng Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woo, L.L., Zwolinski, M., Halak, B. (2021). Anomaly Detection in an Embedded System. In: Halak, B. (eds) Hardware Supply Chain Security. Springer, Cham. https://doi.org/10.1007/978-3-030-62707-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62707-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62706-5

  • Online ISBN: 978-3-030-62707-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics