Skip to main content

Deep Temporal Multi-Graph Convolutional Network for Crime Prediction

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12400))

Included in the following conference series:

Abstract

Urban safety and security play a crucial role in improving life quality of citizen and the sustainable development of urban. In this paper, we propose a Deep Temporal Multi-Graph Convolutional Network (DT-MGCN) model which integrates graph generation component with spatial-temporal component to capture the dependencies between crime and various external factors. More specifically, in the graph generation component, we propose to encode the Euclidean and non-Euclidean correlations among regions into multiple graphs, which will reflect the heterogeneous relationships. The spatial-temporal component which simultaneously employs graph convolutional network (GCN) to capture the spatial patterns and encoder-decoder temporal convolutional network (EDTCN) to describe the temporal features. The experimental results on a real-world crime dataset collected from Chicago demonstrate the effectiveness of the proposed DT-MGCN model, which obtains high accuracy and outperforms the state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Census Bureau. http://www.census.gov

  2. WIKIPEDIA. Community areas in Chicago, the free encyclopedia (2015)

    Google Scholar 

  3. Chicago Data Portal. https://data.cityofchicago.org

  4. Foursquare Developers [EB/OL]. https://developer.foursquare.com

  5. Chun, S.A., Paturu, V.A., Yuan, S., Pathak, R., Atluri, V., Adam, N.R.: Crime prediction model using deep neural networks. In: DG.O., pp. 512–514. ACM (2019)

    Google Scholar 

  6. Dash, S.K., Safro, I., Srinivasamurthy, R.S.: Spatio-temporal prediction of crimes using network analytic approach. In: IEEE International Conference on Big Data, pp. 1912–1917. IEEE (2018)

    Google Scholar 

  7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  8. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. CoRR abs/1506.05163 (2015)

    Google Scholar 

  9. Huang, C., Zhang, J., Zheng, Y., Chawla, N.V.: Deepcrime: attentive hierarchical recurrent networks for crime prediction. In: CIKM, pp. 1423–1432. ACM (2018)

    Google Scholar 

  10. Ibrahim, N., Wang, S., Zhao, B.: Spatiotemporal crime hotspots analysis and crime occurrence prediction. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 579–588. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_42

    Chapter  Google Scholar 

  11. Kianmehr, K., Alhajj, R.: Effectiveness of support vector machine for crime hot-spots prediction. Appl. Artif. Intell. 22(5), 433–458 (2008)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International Conference on Learning Representations (ICLR 2018) (2018)

    Google Scholar 

  14. Rumi, S.K., Luong, P., Salim, F.D.: Crime rate prediction with region risk and movement patterns. CoRR abs/1908.02570 (2019)

    Google Scholar 

  15. Shermila, A., Bellarmine, A., Santiago, N.: Crime data analysis and prediction of perpetrator identity using machine learning approach, pp. 107–114, May 2018

    Google Scholar 

  16. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., WOO, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28, pp. 802–810 (2015)

    Google Scholar 

  17. Tang, Y., Zhu, X., Guo, W., Wu, L., Fan, Y.: Anisotropic diffusion for improved crime prediction in urban China. ISPRS Int. J. Geo-Inf. 8(5), 234 (2019)

    Article  Google Scholar 

  18. Wang, H., Kifer, D., Graif, C., Li, Z.: Crime rate inference with big data. In: KDD, pp. 635–644. ACM (2016)

    Google Scholar 

  19. Wang, H., Yao, H., Kifer, D., Graif, C., Li, Z.: Non-stationary model for crime rate inference using modern urban data. IEEE Trans. Big Data 5(2), 180–194 (2019)

    Article  Google Scholar 

  20. Wang, P., Mathieu, R., Ke, J., Cai, H.J.: Predicting criminal recidivism with support vector machine. In: 2010 International Conference on Management and Service Science, pp. 1–9, August 2010

    Google Scholar 

  21. Wawrzyniak, Z.M., et al.: Data-driven models in machine learning for crime prediction. In: 2018 26th International Conference on Systems Engineering (ICSEng), pp. 1–8, December 2018

    Google Scholar 

  22. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. CoRR abs/1901.00596 (2019)

    Google Scholar 

  23. Yadav, R., Kumari Sheoran, S.: Crime prediction using auto regression techniques for time series data. In: 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–5, November 2018

    Google Scholar 

  24. Yi, F., Yu, Z., Zhuang, F., Guo, B.: Neural network based continuous conditional random field for fine-grained crime prediction. In: IJCAI, pp. 4157–4163. ijcai.org (2019)

    Google Scholar 

  25. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Ge, L., Li, S., Chang, F. (2020). Deep Temporal Multi-Graph Convolutional Network for Crime Prediction. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds) Conceptual Modeling. ER 2020. Lecture Notes in Computer Science(), vol 12400. Springer, Cham. https://doi.org/10.1007/978-3-030-62522-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62522-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62521-4

  • Online ISBN: 978-3-030-62522-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics