Skip to main content

Mixing, tunnelling and the direction of time in the context of Reichenbach’s principles

  • Chapter
  • First Online:
2019-20 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 4))

Abstract

This work reviews the understanding of the direction of time introduced by Hans Reichenbach, including the fundamental relation of the perceived flow of time to the second law of thermodynamics (i.e. the Boltzmann time hypothesis), and the principle of parallelism of entropy increase. An example of a mixing process with quantum effects, which is advanced here in conjunction with Reichenbach’s ideas, indicates the existence of a physical mechanism that reflects global conditions prevailing in the universe and enacts the direction of time locally (i.e. the “time primer”). Generally, this mechanism, whose effects are often enacted by presuming antecedent causality, remains unknown at present. The possibility of experimental detection of the time primer is also discussed: if the time primer is CPT-invariant,its detection may be possible in high-energy experiments under the current level of technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Immanuel Kant. Critique of Pure Reason. Palgrave Macmillan UK, London, 2007 (1781- 1788).

    Google Scholar 

  2. Mario Bunge. Causality and Modern Science. Taylor and Francis, 2017 (1959).

    Google Scholar 

  3. Max Born. Natural philosophy of cause and chance : together with a new essay, Symbol and reality. Waynflete lectures ; 1948. Dover Pub., New York, 1964.

    Google Scholar 

  4. B. Russell. Our Knowledge of the External World. Taylor and Francis, Florence, 2009 (1914).

    Google Scholar 

  5. P. Dowe. Process causality and asymmetry. Erkenntnis, 37(2):179–196, 1992.

    Google Scholar 

  6. Jan Faye. Causation, Reversibility and the Direction of Time, pages 237–266. Springer Netherlands, Dordrecht, 1997.

    Google Scholar 

  7. David Z Albert. Time and chance. Harvard University Press, Cambridge, Mass., 2000.

    Google Scholar 

  8. David Z Albert. After Physics. Harvard University Press, 2015.

    Google Scholar 

  9. Barry Loewer. Counterfactuals and the second law. In Huw Price and Richard Corry, editors, Causation, Physics, and the Constitution of Reality: Russell’s Republic Revisited. Oxford University Press, 2007.

    Google Scholar 

  10. L. Boltzmann. Lecures on gas thoery. English translation by S.G. Brush. University of California Press, Berkeley and L.A., 1964 (1895,1897).

    Google Scholar 

  11. H. Reichenbach. The direction of time. University of California Press, Berkeley, 1956, (reprinted 1971).

    Google Scholar 

  12. S.W. Hawking. The no-boundary proposal and the arrow of time. Vistas in Astronomy, 37: 559 – 568, 1993.

    Google Scholar 

  13. A Y Klimenko. The direction of time and Boltzmann’s time hypothesis. Physica Scripta, 94: 034002, 2019.

    Google Scholar 

  14. I. Prigogine. From being to becoming : time and complexity in the physical sciences. W. H. Freeman, San Francisco, 1980.

    Google Scholar 

  15. R. Penrose. Road to Reality: A Complete Guide to the Laws of the Universe. A. Knopf Inc., 2005.

    Google Scholar 

  16. H. D. Zeh. The physical basis of the direction of time. Springer, New York;Berlin;, 5th edition, 2007.

    Google Scholar 

  17. S. W. Hawking. A brief history of time : from the big bang to black holes. Bantam, London, 2011.

    Google Scholar 

  18. H. Price. Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. Oxford Univ. Press, Oxford, UK, 1996.

    Google Scholar 

  19. P. C. W. Davies. The Physics of Time Asymmetry. University of California Press, Berkeley, 1977.

    Google Scholar 

  20. Lawrence Sklar. Physics and chance : Philosophical issues in the foundations of statistical mechanics. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  21. EricWinsberg. Laws and statistical mechanics. Philosophy of Science, 71(5):707–718, 2004.

    Google Scholar 

  22. J. North. Time in thermodynamics. In The Oxford Handbook of Philosophy of Time. Oxford University Press, 2011.

    Google Scholar 

  23. Karl R. Popper. Irreversible processes in physical theory. Nature, 181(4606):402–403, 1958.

    Google Scholar 

  24. J. Faye, U. Scheffler, and M. Urchs. Perspectives on time. Boston studies in the philosophy of science ; v. 189. Kluwer Academic Publishers, Dordrecht ; Boston, 1997.

    Google Scholar 

  25. Clark Glymour and Frederick Eberhardt. Hans reichenbach. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2016.

    Google Scholar 

  26. A. Y. Klimenko. Kinetics of interactions of matter, antimatter and radiation consistent with antisymmetric (CPT-invariant) thermodynamics. Entropy, 19:202, 2017.

    Google Scholar 

  27. A. Y. Klimenko. Symmetric and antisymmetric forms of the Pauli master equation. Scientific Reports (nature.com), 6:29942, 2016.

    Google Scholar 

  28. A. Y. Klimenko. On the inverse parabolicity of pdf equations. QJMAM, 57:79–93, 2004.

    Google Scholar 

  29. Igor Poltavsky, Limin Zheng, Majid Mortazavi, and Alexandre Tkatchenko. Quantum tunneling of thermal protons through pristine graphene. The Journal of Chemical Physics, 148 (20), 2018.

    Google Scholar 

  30. A. Y. Klimenko. On quantum tunnelling with and without decoherence and the direction of time. In preparation, 2019.

    Google Scholar 

  31. W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 2003.

    Google Scholar 

  32. N. Linden, S. Popescu, A. J. Short, and A. Winter. Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E, 79:061103, 2009.

    Google Scholar 

  33. V.I. Yukalov. Equilibration and thermalization in finite quantum systems. Laser Phys. Lett., 8(7):485—-507, 2011.

    Google Scholar 

  34. P. C. E. Stamp. Environmental decoherence versus intrinsic decoherence. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 370(1975):4429, 2012.

    Google Scholar 

  35. W. H. Zurek. Environment-induced superselection rules. Phys. Rev. Lett., 26(8):1862–1888, 1982.

    Google Scholar 

  36. E. Joos, C. Kiefer, and H. D. Zeh. Decoherence and the Appearance of a Classical World in Quantum Theory. Springer Berlin Heidelberg, Berlin, Heidelberg, 2 edition, 2003.

    Google Scholar 

  37. M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 76:1267–1305, 2005.

    Google Scholar 

  38. S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi. Canonical typicality. Phys. Rev. Lett., 96:050403, 2006.

    Google Scholar 

  39. S. Popescu, A. J. Short, and A. Winter. Entanglement and the foundations of statistical mechanics. Nature Physics, 2(11):754–758, 2006.

    Google Scholar 

  40. A.Y. Klimenko. Note on invariant properties of a quantum system placed into thermodynamic environment. Physica A: Statistical Mechanics and its Applications, 398:65 – 75, 2014.

    Google Scholar 

  41. Lees, J. P. et. al. (BABAR Collaboration). Tests of cpt symmetry in B0b0 mixing and in B0\( c{\bar c} \)K0 decays. Phys. Rev. D, 94:011101, 2016.

    Google Scholar 

  42. R. Penrose. On gravity’s role in quantum state reduction. General Relativity and Gravitation, 28(5):581–600, 1996.

    Google Scholar 

  43. W. H. Zurek. Decoherence and the transition from quantum to classical – revisited. Los Alamos Science, (27):1–26, 2002.

    Google Scholar 

  44. A. Bassia and G. Ghirardi. Dynamical reduction models. Physics Reports., 379:257–426, 2003.A. Bassia and G. Ghirardi. Dynamical reduction models. Physics Reports., 379:257–426, 2003.

    Google Scholar 

  45. G. P. Beretta. On the general equation of motion of quantum thermodynamics and the distinction between quantal and nonquantal uncertainties (MIT, 1981). arXiv: quant-ph/0509116, 2005.

    Google Scholar 

  46. R. Penrose. On the gravitization of quantum mechanics 1: Quantum state reduction. Foundations of Physics, 44(5):557–575, 2014.

    Google Scholar 

  47. A. Y. Klimenko and U. Maas. One antimatter- two possible thermodynamics. Entropy, 16 (3):1191–1210, 2014.

    Google Scholar 

  48. P. Braun-Munzinger and J. Stachel. The quest for the quark-gluon plasma. Nature, 448 (7151):302–309, 2007.

    Google Scholar 

  49. McL. Emmerson J. Symmetry principles in particle physics. Clarendon Press, Oxford, 1972.

    Google Scholar 

  50. Niels Madsen. Cold antihydrogen: a new frontier in fundamental physics. Phil.Trans. Roy. Soc. A, 368(1924):3671–3682, 2010.

    Google Scholar 

  51. L. D. Landau and E. M. Lifshits. Course of Theoretical Physics vol.3: Qunatum mechanics. Butterworth-Heinemann, Oxford, 1980.

    Google Scholar 

  52. W. Pauli. Uber das h-theorem vom anwachsen der entropie vom standpunkt der neuen quantenmechanik. In Probleme der Modernen Physik. Arnold Sommerfeld zum 60 Geburtstage, pages 30–45. Hirzel, Leipzig, 1928.

    Google Scholar 

Download references

Acknowledgements

The author thanks the Mathematical Research Institute MATRIX and the Department of Mathematics and Statistics at The University of Western Australia for productive discussions and financial support. The author also appreciates fruitful discussion at the Centre for Time (The University of Sydney).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Klimenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimenko, A.Y. (2021). Mixing, tunnelling and the direction of time in the context of Reichenbach’s principles. In: de Gier, J., Praeger, C.E., Tao, T. (eds) 2019-20 MATRIX Annals. MATRIX Book Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-62497-2_23

Download citation

Publish with us

Policies and ethics