Skip to main content

GeoSPARQL+: Syntax, Semantics and System for Integrated Querying of Graph, Raster and Vector Data

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12506))

Included in the following conference series:

Abstract

We introduce an approach to semantically represent and query raster data in a Semantic Web graph. We extend the GeoSPARQL vocabulary and query language to support raster data as a new type of geospatial data. We define new filter functions and illustrate our approach using several use cases on real-world data sets. Finally, we describe a prototypical implementation and validate the feasibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.opengeospatial.org.

  2. 2.

    https://www.w3.org.

  3. 3.

    https://github.com/i3mainz/jena-geo.

  4. 4.

    http://sis.apache.org.

  5. 5.

    https://qgis.org/de/site/.

References

  1. Abhayaratna, J., et al.: OGC benefits of representing spatial data using semantic and graph technologies (2020). https://github.com/opengeospatial/geosemantics-dwg/raw/master/white_paper/wp.pdf

  2. Abhayaratna, J., van den Brink, L., Car, N., Homburg, T., Knibbe, F.: OGC GeoSPARQL SWG charter (2020). https://github.com/opengeospatial/geosemantics-dwg/tree/master/geosparql_2.0_swg_charter

  3. Albiston, G.L., Osman, T., Chen, H.: GeoSPARQL-Jena: Implementation and benchmarking of a GeoSPARQL graphstore. Semant. Web J. (2019)

    Google Scholar 

  4. Andrejev, A., Misev, D., Baumann, P., Risch, T.: Spatio-temporal gridded data processing on the semantic web. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems, pp. 38–45. IEEE (2015)

    Google Scholar 

  5. Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: adding a spatial dimension to the web of data. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_46

    Chapter  Google Scholar 

  6. Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and GeoSPARQL. Semant. Web 3(4), 355–370 (2012)

    Article  Google Scholar 

  7. Bereta, K., Stamoulis, G., Koubarakis, M.: Ontology-based data access and visualization of big vector and raster data. In: 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018, pp. 407–410. IEEE (2018)

    Google Scholar 

  8. Blower, J., Riechert, M., Roberts, B.: Overview of the CoverageJSON format (2017)

    Google Scholar 

  9. Van den Brink, L., Barnaghi, P., et al.: Best practices for publishing, retrieving, and using spatial data on the web. Semant. Web 10(1), 95–114 (2019)

    Article  Google Scholar 

  10. Cerans, K., Barzdins, G., et al.: Graphical schema editing for StarDog OWL/RDF databases using OWLGrEd/S In: OWLED, vol. 849 (2012)

    Google Scholar 

  11. Consortium, O.G., et al.: OGC GeoSPARQL-a geographic query language for RDF data. OGC Candidate Implementation Standard (2012)

    Google Scholar 

  12. World Wide Web Consortium: Sparql 1.1 overview (2013)

    Google Scholar 

  13. World Wide Web Consortium: The RDF data cube vocabulary (2014)

    Google Scholar 

  14. Eclipse Foundation Contributor: Rdf4j (2020). rdf4j.org

  15. Erling, O.: Virtuoso, a hybrid RDBMS/graph store. IEEE Data Eng. 35(1), 3–8 (2012)

    Google Scholar 

  16. Fonseca, F.: Geospatial semantic web. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 388–391. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-35973-1_513

    Chapter  Google Scholar 

  17. Herring, J., et al.: Opengis® implementation standard for geographic information-simple feature access-part 1: Common architecture [corrigendum] (2011)

    Google Scholar 

  18. Homburg, T., Staab, S., Janke, D.: GeoSPARQL+: syntax, semantics and system for integrated querying of graph, raster and vector data. extended version. technical report (2020) (at arXiv.org). Technical report, Mainz University of Applied Sciences (2020)

  19. Huxhold, W.E., et al.: An introduction to urban geographic information systems. OUP Catalogue (1991)

    Google Scholar 

  20. ISO 19123:2005: Geographic information–schema for coverage geometry and functions. The International Organization for Standardization, Geneva, Switzerland (2005)

    Google Scholar 

  21. Jaiswal, D., Dey, S., Dasgupta, R., Mukherjee, A.: Spatial query handling in semantic web application: an experience report. In: 2015 Applications and Innovations in Mobile Computing (AIMoC), pp. 170–175. IEEE (2015)

    Google Scholar 

  22. Jena, A.: A free and open source java framework for building semantic web and linked data applications (2019)

    Google Scholar 

  23. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_29

    Chapter  Google Scholar 

  24. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a Semantic Geospatial DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_19

    Chapter  Google Scholar 

  25. Nogueras-Iso, J., Zarazaga-Soria, F.J., Béjar, R., Álvarez, P., Muro-Medrano, P.R.: OGC catalog services: a key element for the development of spatial data infrastructures. Comput. Geosci. 31(2), 199–209 (2005)

    Article  Google Scholar 

  26. Ontotext: Graphdb (2020). graphdb.ontotext.com

  27. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_3

    Chapter  Google Scholar 

  28. Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extending SPARQL to support spatiotemporal queries. In: Ashish, N., Sheth, A. (eds.) Geospatial Semantics and the Semantic Web. ADSW, vol. 12, pp. 61–86. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-9446-2_3

    Chapter  Google Scholar 

  29. Portele, C.: OpenGIS® geography markup language (GML) encoding standard. Open Geospatial Consortium (2007)

    Google Scholar 

  30. Quintero, R., Torres, M., Moreno, M., Guzmán, G.: Towards a semantic representation of raster spatial data. In: Janowicz, K., Raubal, M., Levashkin, S. (eds.) GeoS 2009. LNCS, vol. 5892, pp. 63–82. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10436-7_5

    Chapter  Google Scholar 

  31. Ramsey, P., et al.: PostGIS Manual, p. 17. Refractions Research Inc. (2005)

    Google Scholar 

  32. Santos, R.: Java advanced imaging API: a tutorial. Revista de Informática Teórica e Aplicada 11(1), 93–124 (2004)

    Article  Google Scholar 

  33. Scharrenbach, T., Bischof, S., Fleischli, S., Weibel, R.: Linked raster data. In: Xiao, N., Kwan, M.P., Goodchild, M.F., Shekhar, S. (eds.) Geographic Information Science. LNCS, vol. 7478. Springer, Heidelberg (2012)

    Google Scholar 

  34. Stolze, K.: SQL/MM spatial: The standard to manage spatial data in a relational database system. In: BTW 2003-Datenbanksysteme für Business, Technologie und Web, Tagungsband der 10. BTW Konferenz. Gesellschaft für Informatik eV (2003)

    Google Scholar 

  35. Tomlin, C.D.: Map algebra: one perspective. Landsc. Urban Plan. 30, 3–12 (1994)

    Article  Google Scholar 

  36. Wirz, D.: OGC Simple Features (for SQL and XML/GML). University of Zurich, Department Geography, Zurich (2004)

    Google Scholar 

Download references

Acknowledgements

Work by Steffen Staab was partially supported by DFG through the project LA 2672/1, Language-integrated Semantic Querying (LISeQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Homburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Homburg, T., Staab, S., Janke, D. (2020). GeoSPARQL+: Syntax, Semantics and System for Integrated Querying of Graph, Raster and Vector Data. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62419-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics