Skip to main content

Water Resources Management for Irrigated Agriculture in Perspective of Geospatial Techniques

  • Chapter
  • First Online:
Geostatistics and Geospatial Technologies for Groundwater Resources in India

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

Uttar Pradesh is well known for its rice–wheat cropping system whenever it comes to agricultural sector. Being one of the highest producers of wheat and the second highest in terms of rice production, the state needs to be cautious about the usage of both of the quantity and quality of water as irrigation. The adversity of variability in climate has afflicted both the crop production as well as overall crop health. Crop irrigation water mainly comes from both the groundwater and surface water sources. Both the sources bear strong relation with the rainfall variability. The state has already begun to sense the over-exploitation of its groundwater resources. Even the surface water resources are under the threat of either insufficient rainfall to replenish them or they are unfit for use due to the quality issues. Besides, the anticipated climate change is further projected to alter the spatio-temporal pattern of rainfall enhancing the variability. Thus, there is a dire need to manage the water resources to make the irrigation facility more effective and thus pulling up the crop health. The groundwater deficits or its poor quality often get reflected through the vegetation health thriving on this resource. This study uses this key association between the groundwater and vegetation condition to venture into the issues related to water resources management with the help of varied indices in geo-spatial techniques. Moderate Resolution Imaging Spectroradiometer (MODIS) derived Enhanced Vegetation Index (EVI) has been used to monitor the seasonal vegetation status (crop yield) in correspondence with rainfall and groundwater fluctuations for the period of 1998 to 2017. Thereby, this study is an attempt to assess the spatial and temporal pattern of crop health in response to groundwater availability based on remote sensing approach. The study will help the farmers, irrigation engineers, agriculturalists and Government officials to take necessary steps for proper management of the water resources successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary, P. P., Sena, D. R., Dash, Ch. J., Mandal, U., Nanda, S., Madhu, M., et al. (2019). Effect of Calibration and validation decisions on streamflow modeling for a heterogeneous and low runoff-producing River Basin in India. Journal of Hydrologic Engineering, 24(7), 05019015.

    Article  Google Scholar 

  • Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah, Ilyas, A., & Ud Din, I. (2017). Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6, 1–19.

    Google Scholar 

  • Ambika, A. K., Wardlow, B., & Mishra, V. (2016). Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Scientific Data, 3, 160118.

    Article  Google Scholar 

  • Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutik, J. P. (2008). Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change (pp. 33–48).

    Google Scholar 

  • Benyon, R. G., Theiveyanathan, S., & Doody, T. M. (2006). Impacts of tree plantations on groundwater in south-eastern Australia. Australian Journal of Botany, 54, 181–192.

    Article  Google Scholar 

  • Bhatla, R., Singh, M., Mall, R. K., Tripathi, A., & Raju, P. V. S. (2015). Variability of summer monsoon rainfall over Indo-Gangetic plains in relation to El-Nino/La-Nina. Natural Hazards, 78, 837–853.

    Article  Google Scholar 

  • Bhatt, D., & Mall, R. K. (2015). Surface water resources, climate change and simulation modeling. Aquatic Procedia, 4, 730–738.

    Article  Google Scholar 

  • Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research, 4, 64–74.

    Article  Google Scholar 

  • Bondre, N. (2011). Tracking groundwater depletion. Global Change, 24–25.

    Google Scholar 

  • CGWB. (2014). Central Ground Water Board, Ministry of Water Resources, River Development and Ganga Rejuvenation (pp. 1–281). Faridabad: Govt. of India.

    Google Scholar 

  • Chinnasamy, P., Hubbart, J. A., & Agoramoorthy, G. (2012). Using remote sensing data to improve groundwater supply estimations in Gujarat, India. Earth Interactions, 17, 1–17.

    Article  Google Scholar 

  • CWC. (2013). Water Resources Information System Directorate, Water Planning and Project, Information System Organization. Central Water Commission, Govt. of India (pp. 1–201).

    Google Scholar 

  • Dash, Ch. J., Sarangi, A., Adhikary, P. P., & Singh, D. K. (2016). Simulation of nitrate leaching under maize-wheat cropping system in a semiarid irrigated area of the Indo-Gangetic Plain, India. Journal of Irrigation and Drainage Engineering, 142(2), 04015053.

    Article  Google Scholar 

  • Dash, S. K., & Mamgain, A. (2011). Changes in the frequency of different categories of temperature extremes in India. Journal of Applied Meteorology and Climatology, 50, 1842–1858.

    Article  Google Scholar 

  • Debaeke, P., Pellerin, S., & Scopel, E. (2017). Climate-smart cropping systems for temperate and tropical agriculture: Mitigation, adaptation and trade-offs. Cahiers Agricultures, 26, 34002.

    Article  Google Scholar 

  • DES. (2014) Department of Agriculture and Cooperation, Ministry of Agriculture. Govt. of India, New Delhi.

    Google Scholar 

  • Dutta, D., Kundu, A., Patel, N. R., Saha, S. K., & Siddiqui, A. R. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived vegetation condition index (VCI) and standardized precipitation index (SPI). Egyptian Journal of Remote Sensing and Space Sciences, 18, 53–63.

    Article  Google Scholar 

  • Dutta, D., Kundu, A., & Patel, N. R. (2013). Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto International, 28, 192–209.

    Article  Google Scholar 

  • EnviStats India—Supplement on Environmental Accounts. (2018). Central Statistics Office; Ministry of Statistics and Programme Implementation, Govt. of India.

    Google Scholar 

  • Fishman, R., Devineni, N., & Raman, S. (2015). Can improved agricultural water use efficiency save India’s groundwater? Environmental Research Letters, 10, 084022.

    Article  Google Scholar 

  • Fishman, R., Devineni, N., & Raman, S. (2015). Can improved agricultural water use efficiency save India’s groundwater? Environmental Research Letters 084022.

    Google Scholar 

  • Giordano, M., Turral, H., Scheierling, S. M., Tréguer, D. O., & McCornick, P. G. (2017). Beyond “more crop per drop”: evolving thinking on agricultural water productivity (p. 53). International Water Management Institute (IWMI); Washington DC, USA: The World Bank, Colombo, Sri Lanka. IWMI Research Report 169.

    Google Scholar 

  • Heller, E., Rhemtulla, J. M., Lele, S., Kalacska, M., Badiger, S., Sengupta, R., & Ramankutty, N. (2012). Mapping Crop types, irrigated areas, and cropping intensities in heterogeneous landscapes of Southern India using multi-temporal medium-resolution imagery: Implications for assessing water use in agriculture. Photogrammetric Engineering & Remote Sensing, 78, 815–827.

    Article  Google Scholar 

  • Humphreys, E., Meisner, C., Gupta, R., Timsina, J., Beecher, H. G., Lu, T. Y., et al. (2005). Water saving in rice-wheat systems. Plant Production Science, 8, 242–258.

    Article  Google Scholar 

  • Humphreys, E., Meisner, C., Gupta, R. K., Timsina, J., Beecher, H. G., Lu, T. Y., Singh, Y., Gill, M. A., Masih, I., Guo, Z. J., & Thompson, J. A. (2004). Water saving in rice-wheat systems. Paper presented at the 4th International Crop Science Congress on New directions for a diverse planet, Brisbane, Australia, Sept 26–Oct 1, 2004 (p. 28).

    Google Scholar 

  • Jalota, S. K., Jain, A. K., & Vashishta, B. B. (2018). Minimize water deficit in wheat crop to ameliorate groundwater decline in rice-wheat cropping system. Agricultural Water Management, 208, 261–267.

    Article  Google Scholar 

  • Jin, X. M., Schaepman, M. E., Clevers, J. G. P. W., Su, Z. B., & Hu, G. C. (2011). Groundwater depth and vegetation in the Ejina Area, China. Arid Land Research and Management, 25, 194–199.

    Article  Google Scholar 

  • Kamble, D. B., Gautam, S., Bisht, H., Rawat, S., & Kundu, A. (2019). Drought assessment for kharif rice using standardized precipitation index (SPI) and vegetation condition index (VCI). Journal of Agrometeorology, 21, 182–187.

    Article  Google Scholar 

  • Kapur, D., Khosla, R., & Mehta, P. B. (2009). Climate change: India’s options. Economic and Political Weekly, XLIV(31), 34–42.

    Google Scholar 

  • Karim, M. R., Alam, M. M., Ladha, J. K., Islam, M. S., & Islam, M. R. (2014). Effect of different irrigation and tillage methods on yield. Bangladesh Journal of Agricultural Research, 1, 151–163.

    Article  Google Scholar 

  • Kaushal, M. P., Khepar, S. D., & Panda, S. N. (1985). Saline groundwater management and optimal cropping pattern. Water International, 10, 86–91.

    Article  Google Scholar 

  • Kharif Estimate Report. (2019). Cotton, Soybean, Paddy (Vol. 1). SkyMet. https://www.skymetweather.com/themes/skymet/images/Kharif_Estimate_2019_Draft4.pdf

  • Kothawale, D. R., Revadekar, J. V., & Kumar, K. R. (2010). Recent trends in pre-monsoon daily temperature extremes over India. Journal of Earth System Science, 119, 51–65.

    Article  Google Scholar 

  • Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the U.S Great Plains Agricultural Production. Scientific Reports, 8, 1–18.

    Article  Google Scholar 

  • Kundu, A., Dwivedi, S., & Dutta, D. (2016). Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian Journal of Geosciences, 9, 144. https://doi.org/10.1007/s12517-015-2185-9

    Article  Google Scholar 

  • Lakshmi, S. V., & Reddy, Y. V. K. (2018). Identification of groundwater potential zones using GIS and remote sensing. International Journal of Pure and Applied Mathematics, 119, 3195–3210.

    Google Scholar 

  • Lal, M. (2011). Implications of climate change in sustained agricultural productivity in South Asia. Regional Environmental Change, 11(Suppl 1), S79–S94.

    Article  Google Scholar 

  • Lv, J. J., Wang, X. S., Zhou, Y. X., Qian, K. Z., Wan, L., Eamus, D., & Tao, Z. P. (2013). Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi arid region in China. Ecohydrology, 6, 142–149.

    Article  Google Scholar 

  • Mahmood, N., Ahmad, B., Hassan, S., & Bakhsh, K. (2012). Impact of temperature and precipitation on rice productivity in rice-wheat cropping system of Punjab province. The Journal of Animal and Plant Sciences, 22, 993–997.

    Google Scholar 

  • Mall, R. K. (2013). Climate change and water security: an Indian perspective. Signatures, Newsletter of the ISRS–AC, 25, 119–133.

    Google Scholar 

  • Mall, R. K., Gupta, A., Singh, R., Singh, R. S., & Rathore, L. S. (2006). Water resources and climate change: An Indian perspective. Current Science, 90, 1610–1626.

    Google Scholar 

  • Mall, R. K., Singh, N., Singh, K. K., Sonkar, G., & Gupta, A. (2018). Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh, India. Climate Change, 149, 503–515.

    Article  Google Scholar 

  • Mall, R. K., Sonkar, G., Bhatt, D., Sharma, N. K., Baxla, A. K., & Singh, K. K. (2016). Managing impact of extreme weather events in sugarcane different agro-climatic zones of Uttar Pradesh. Mausam, 67, 233–250.

    Article  Google Scholar 

  • Mandal, A. K. (2016). Mapping and characterization of salt-affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management. Cogent Geoscience, 2, 1213689.

    Article  Google Scholar 

  • McLaughlin, D., & Kinzelbach, W. (2015). Food security and sustainable resource management. Water Resources Research, 51, 4966–4985.

    Article  Google Scholar 

  • Minhas, P. S., Qadir, M., & Yadav, R. K. (2019). Groundwater irrigation induced soil sodification and response options. Agricultural Water Management, 215, 74–85.

    Article  Google Scholar 

  • Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M. A., & Kijne, J. (2010). Improving agricultural water productivity: between optimism and caution. Agricultural Water Management, 97, 528–535.

    Article  Google Scholar 

  • Molden, D., Oweis, T. Y., Steduto, P., Kijne, J. W., Hanjra, M. A., & Bindraban, P. S. (2007). Pathways for increasing agricultural water productivity. In D. Molden (Ed.), Water for food, water for life: a comprehensive assessment of water management in agriculture (pp. 279–310). London, UK/Colombo, Sri Lanka: Earthscan/IWMI.

    Google Scholar 

  • Mondal, S. (2012). Remote sensing and GIS based ground water potential mapping of Kangshabati irrigation command area, West Bengal. Journal of Geography and Natural Disasters, 1, 1000104.

    Article  Google Scholar 

  • Moors, E. J., Groot, A., & Biemans, H., et al. (2011). Adaptation to changing water resources in the Ganges basin, Northern India. Environmental Science and Policy, 4, 758–769.

    Article  Google Scholar 

  • Naresh, R. K., Singh, B., Singh, S. P., Singh, P. K., Kumar, A., & Kumar, A. (2012). Furrow irrigated raised bed (FIRB) planting technique for diversification of rice-wheat system for Western IGP region. International Journal of Life Sciences Biotechnology and Pharma Research, 1, 134–141.

    Google Scholar 

  • Panwar, A. S., Shamim, M., Babu, S., et al. (2018). Enhancement in productivity, nutrients use efficiency, and economics of rice-wheat cropping systems in India through farmer’s participatory approach. Sustainability, 11, 122–148.

    Article  Google Scholar 

  • Raju, B. M. K., Rao, K. V., Venkateswarlu, B., et al. (2013). Revisiting climatic classification in India: A district-level analysis. Current Science, 105, 492–495.

    Google Scholar 

  • Rockström, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Nature, 461, 472–475.

    Article  Google Scholar 

  • Sauer, T., Havlík, P., Schneider, U. A., Schmid, E., Kindermann, G., & Obersteiner, M. (2010). Agriculture and resource availability in a changing world: The role of irrigation. Water Resources Research, 46(W06503), 1–12.

    Google Scholar 

  • Senthilkumar, M., Gnanasundar, D., & Arumugam, R. (2019). Identifying groundwater recharge zones using remote sensing & GIS techniques in Amaravathi aquifer system, Tamil Nadu, South India. Sustainable Environment Research, 29, 1–9.

    Article  Google Scholar 

  • Sharma, B., Molden, D., & Cook, S. (2015). Water use efficiency in agriculture: Measurement, current situation and trends. In: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D. (Eds.) Water use efficiency in agriculture: Measurement, current situation and trends, Paris, (pp. 39–64).

    Google Scholar 

  • Sharma, B. R., Gulati, A., Mohan, G., Manchanda, S., Ray, I., & Amarasinghe, U. (2018). Water productivity mapping of major Indian crops. National Bank for Agriculture and Rural Development (NABARD), Mumbai and Indian Council for Research on International Economic Relations (ICRIER), New Delhi, pp 30–55.

    Google Scholar 

  • Sharma, K. D., & Gosain, A. K. (2010). Application of climate information and predictions in water sector: capabilities. Proceedings of Environmental Sciences, 1, 120–129.

    Article  Google Scholar 

  • Shewale, M. P., & Kumar, S. (2005). Climatological features of drought indices in India. Government of India, Pune: India Meteorological Department.

    Google Scholar 

  • Singh, B., Humphreys, E., Gaydond, D. S., & Eberbach, P. L. (2016). Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Research, 197, 83–96.

    Article  Google Scholar 

  • Singh, H., Kang, J. S., & Kaur, J. (2017). Tillage and residue management for sustaining rice-wheat cropping system in Indo-Gangetic Plains—A review. The Pharma Innovation, an Pharmaceutical Journal, 6, 89–99.

    Google Scholar 

  • Singh, R., Kundu, D. K., & Bandyopadhaya, K. K. (2010). Enhancing agricultural productivity through enhanced water use efficiency. Journal of Agricultural Physics, 10, 1–15.

    Google Scholar 

  • Srinivasarao, Ch., Srinivas, K., Sharma, K. L., & Kundu, S. (2017). Soil health improving strategies for resilient rice based cropping systems of India. Journal of Rice Research, 10, 54–63.

    Google Scholar 

  • Srivastava, S. K., Chand, R., Singh, J., Kaur, A. P., Jain, R., Kingsly, I., & Raju, S. S. (2017). Revisiting groundwater depletion and its implications on farm economics in Punjab, India. Current Science, 113, 422–429.

    Article  Google Scholar 

  • Srivastava, S. K., Chand, R., Raju, S. S., Jain, R., Kingsly, I., Sachdeva, J., et al. (2015). Unsustainable groundwater use in Punjab agriculture: Insights from cost of cultivation survey. Indian Journal of Agricultural Economics, 70, 365–378.

    Google Scholar 

  • Suweis, S., Rinaldo, A., Maritan, A., & Odorico, P. D. (2013). Water-controlled wealth of nations. Proceedings of the National Academy of Sciences, 110, 4230–4233.

    Article  Google Scholar 

  • Taylor, R. G., et al. (2013). Ground water and climate change. Nature Climate Change, 3, 322–329.

    Article  Google Scholar 

  • Thenkabail, P. S., Dheeravath, V., Biradar, C. M., Gangalakunta, O. R. P., Noojipady, P., Gurappa, C., et al. (2009). Irrigated area maps and statistics of india using remote sensing and national statistics. Remote Sensing, 1, 50–67.

    Article  Google Scholar 

  • Timsina, J., & Connor, D. J. (2001). Productivity and management of rice-wheat cropping systems: Issues and challenges. Field Crops Research, 69, 93–132.

    Article  Google Scholar 

  • Tuninetti, M., Tamea, S., D’Odorico, P., Laio, F., & Ridolfi, L. (2015). Global sensitivity of high-resolution estimates of crop water footprint. Water Resources Research, 51, 8257–8272.

    Article  Google Scholar 

  • UPSWP. (2009). Uttar Pradesh State Water Policy. https://www.swaraup.gov.in/Downloads/up_wp.pdf. Accessed on 20.03.2017.

  • Waikar, M. L., & Nilawar, A. P. (2014). Identification of groundwater potential zone using remote sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology, 3, 12163–12174.

    Google Scholar 

Download references

Acknowledgements

Authors thank the Climate Change Programme, Department of Science and Technology-New Delhi and University Grants Commission, New Delhi for financial support for this study. The rainfall data used in the study was obtained from the India Meteorological Department, New Delhi that is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, D., Kundu, A., Dey, S., Mall, R.K., Raju, K.N.P. (2021). Water Resources Management for Irrigated Agriculture in Perspective of Geospatial Techniques. In: Adhikary, P.P., Shit, P.K., Santra, P., Bhunia, G.S., Tiwari, A.K., Chaudhary, B.S. (eds) Geostatistics and Geospatial Technologies for Groundwater Resources in India. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-62397-5_28

Download citation

Publish with us

Policies and ethics