Skip to main content

Mapping Groundwater Recharge Potential Zones Using GIS Approaches and Trend of Water Table Fluctuation in Birbhum District, West Bengal, India

  • Chapter
  • First Online:
Geostatistics and Geospatial Technologies for Groundwater Resources in India

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 323 Accesses

Abstract

Constant population expansion, continuous monsoon failure and over-exploitation put tremendous pressure on groundwater resources leading to its gradual reduction. In Birbhum district,demand for groundwater resources has increased tremendouslydue to continuous population expansions and extensive agriculture practices. In this context, our present research work is carried out in the perspective of delineation of potential groundwater recharge zones (GRPZ) in Birbhum district. Three different models namely knowledge-driven method (KDM), multi-influencing factor technique (MIF) and analytical hierarchy process (AHP) are implemented in the present study. Ten different factors that influence the groundwater recharge i.e., geology, geomorphology, rainfall, aquifer material, drainage density, soil type, lineament and fault density, slope, elevation and landuse/landcover are integrated into ArcGIS environment to derive the potential groundwater recharge zone (PGWR) zone. The model outputs are validated with success rate curve (SRC), prediction rate curve (PRC) and water-table fluctuation (WTF) data of 181 monitoring wells. The SRC implemented shows a prediction rate of 82.14%, 79.85% and 75.07% for MIF, KDM and AHP respectively suggesting the superiority of MIF techniques in comparison to other modelling. The Wilcoxon-signed rank test and results of map comparison show a significant difference (at a 5% significance level) in prediction among the models. The time series model used to investigate the WTF trend for past 23 years shows a significant declining trend water-table depth. Construction of various recharge structures at an appropriate location is suggested which must be preceded with details field investigations. The outcomes of the study can be useful resource for the policymakers, planners, government officials and leaders for the implementation of groundwater recharge projects in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary, P. P., Chandrasekharan, H., Trivedi, S. M., & Dash, C. J. (2015). GIS applicability to assess spatio-temporal variation of groundwater quality and sustainable use for irrigation. Arabian Journal of Geosciences, 8(5), 2699–2711.

    Article  Google Scholar 

  • Agarwal, E., Agarwal, R., Garg, R. D., & Garg, P. K. (2013). Delineation of groundwater potential zone: An AHP/ANP approach. Journal of Earth System Sciences, 122(3), 887–898.

    Article  Google Scholar 

  • Baghbani, M., Gholami, E., & Barani, H. R. R. (2016). Seismic hazard analysis of Dam Siyaho in South Khorasan province (Eastern Iran). Journal of Tethys, 4(3), 180–199.

    Google Scholar 

  • Banks, D., & Robins, N. (2002). An introduction to groundwater in crystalline bedrock. In Norges Geologiske Undersøkelse (p. 64). Trondheim.

    Google Scholar 

  • Bhuiyan, C. (2015). An approach towards site selection for water banking in unconfined aquifers through artificial recharge. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2015.01.052.

    Article  Google Scholar 

  • BMTPC. (2017). Building materials and technology promotion council: Vulnerability atlas (2nd edn). Ministry of Housing and Urban Affairs (Govt. of India). https://www.bmtpc.org/. Accessed November, 2017

  • Bouwer, H. (2000). Integrated water management: emerging issues and challenges. Agriculture Water Management, 45(3), 217–228. https://doi.org/10.1016/S0378-3774(00)00092-5.

  • Bui, D. T., Pham, B. T., Nguyen, Q. H., & Hoang, N. D. (2016). Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: A case study in Central Vietnam.

    Google Scholar 

  • CGWB. (1985). Central groundwater board (ER): Hydrogeology and groundwater resources of Birbhum district, West Bengal (Technical report, series D; No. 30).

    Google Scholar 

  • CGWB. (2001). Ground water year book of West Bengal (1999–2000) (pp. 11–12). Central Ground Water Board, Ministry of Water Resources, Government of India, New Delhi.

    Google Scholar 

  • CGWB. (2014). Ground water year book of West Bengal & Andaman & Nicobar Islands (2013–2014) (Technical report: series ‘D’). Central Ground Water Board, Ministry of Water Resources (Government of India). https://www.cgwb.gov.in/Regions/GW-year-Books/GWYB-2013-14/West%20Bengal%20GWYB%2013-14.pdf. Accessed on: January, 2018.

  • CGWB. (2016a). Ground water year book of West Bengal & Andaman & Nicobar Islands (2014–2015) (Technical report: series ‘D’). Central Ground Water Board, Ministry of Water Resources (Government of India), https://www.cgwb.gov.in/Regions/GW-year-Books/GWYB-2014-15/GWYB%202014-15(WB%20AND%20AN).pdf. Accessed on: January, 2018.

  • CGWB. (2016b). Ground water year book of West Bengal & Andaman & Nicobar Islands (2014–2015) (Technical report: series ‘D’). Central Ground Water Board, Ministry of Water Resources (Government of India). https://www.cgwb.gov.in/Regions/GW-year-Books/GWYB-2015-16/GWYB%20ER%202015-16.pdf. Accessed on: January, 2018

  • CGWB. (2017). Ground water year book of West Bengal & Andaman & Nicobar Islands (2014–2015) (Technical report: series ‘D’). Central Ground Water Board, Ministry of Water Resources (Government of India). https://cgwb.gov.in/Regions/GW-year-Books/GWYB-%202016-17/WB%20&%20Andaman.pdf. Accessed on: January, 2018.

  • Chezgi, J., Pourghasemi, H. R., Naghibi, S. A., Moradi, H. R., & Zarkesh, M. K. (2016). Assessment of a spatial multi-criteria evaluation to site selection underground dams in the Alborz Province, Iran. Geocarto International, 31(6), 628–646. https://doi.org/10.1080/10106049.2015.1073366.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Science, 59, 1209–1222.

    Article  Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65–12, 1389–1399.

    Google Scholar 

  • Chung, C. J. F., & Fabbiri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b.

    Article  Google Scholar 

  • Debnath, G. C., & Mondal, P. (2013). Water degradation of Birbhum district. Golden Research Thoughts, 2(11), 2231–5063.

    Google Scholar 

  • Deepa, S., Venkateswaran, S., Ayyandurai, R., Kannan, R., & Vijay Prabhu, M. (2016). Groundwater recharge potential zones mapping in upper Manimuktha Sub basin Vellar river Tamil Nadu India using GIS and remote sensing techniques. Modeling Earth Systems and Environment, 2, 137. https://doi.org/10.1007/s40808-016-0192-9.

    Article  Google Scholar 

  • Dinesan, V. P., Gopinatha, G., & Ashitha, M. K. (2015). Application of geoinformatics for the delineation of groundwater prospects zones—A case study for Melattur Grama Panchayat in Kerala, India. In International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE’15). Aquatic Procedia (Vol. 4, pp. 1389–1396).

    Google Scholar 

  • FAO. (2003). Food and agriculture organization, review of world water resources by country. Rome, Italy: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Ghayoumian, J., Mohseni Saravi, M., Feiznia, S., Nouri, B., & Malekian, A. (2007). Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences, 30(2), 364–374. https://doi.org/10.1016/j.jseaes.2006.11.002.

    Article  Google Scholar 

  • Govt. of West Bengal. (2017). Birbhum district, West Bengal. https://birbhum.gov.in/plp2005-06.htm.

  • GSI. (2017). Birbhum district, West Bengal, District resource map (1st ed.). Geological Survey of India. https://www.portal.gsi.gov.in/portal/page?pageid=108,721665&_dad=portal&_schema=PORTAL. Accessed November, 2016

  • Healy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal, 2002(10), 91–109. https://doi.org/10.1007/s10040-001-0178-0.

    Article  Google Scholar 

  • India-WRIS. (2019). Water resources information system (WRIS), central water commission and ISRO. https://tamcnhp.com/wris/#/. Accessed on February 12, 2019.

  • IWD. (1987). Report of expert committee on irrigation. Irrigation and Waterways Department, Government of West Bengal, Kolkata.

    Google Scholar 

  • Jha, M. K., & Chowdary, V. M. (2007). Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal, 15(1), 197–200.

    Article  Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in salboni block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18, 1713–1728.

    Article  Google Scholar 

  • Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2013). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 7(4), 1385–1401. https://doi.org/10.1007/s12517-013-0849-x.

    Article  Google Scholar 

  • Kaur, H., Gupta, S., Parkash, S., & Thapa, R. (2018a). Knowledge driven method: A tool for landslide susceptibility zonation (LSZ). Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2018.1558024.

  • Kaur, H., Gupta, S., Parkash, S., & Thapa, R. (2018b). Application of geospatial technologies for multi-hazard mapping and characterization of associated risk at local scale. Annals of GIS, 24(1), 33–46. https://doi.org/10.1080/19475683.2018.1424739.

  • Kaur, H., Gupta, S., Parkash, S., Thapa, R., Gupta, A., & Khanal, G. C. (2019). Evaluation of landslide susceptibility in a hill city of Sikkim Himalaya with the perspective of hybrid modelling techniques. Annals of GIS. https://doi.org/10.1080/19475683.2019.1575906.

    Article  Google Scholar 

  • Kaur, H., Gupta, S., Parkash, S., Thapa, R., & Mandal, R. (2017). Geospatial modelling of flood susceptibility pattern in a subtropical area of West Bengal, India. Environmental Earth Science, 76(339), 1–22. https://doi.org/10.1007/s12665-017-6667-9.

    Article  Google Scholar 

  • Kazakis, N., & Voudouris, K. S. (2015). Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the drastic method using quantitative parameters. Journal of Hydrology, 525, 13–25. https://doi.org/10.1016/j.jhydrol.2015.03.035.

    Article  Google Scholar 

  • Krishnamurthy, J., Mani, A., Jayaraman, V., & Manivel, M. (2000). Groundwater resources development in hard rock terrain—An approach using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 2(3–4), 204–215.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontier, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011.10.007.

    Article  Google Scholar 

  • Mahmoud, S. H., Alazba, Z. Z., Adamowski, J., & El-Gindy, A. M. (2015). GIS methods for sustainable storm water harvesting and storage using remote sensing for land cover data: Location assessment. Environmental Monitoring Assessment, 187(9), 598. https://doi.org/10.1007/s10661-015-4822-x.

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.

    Google Scholar 

  • Merghadi, A., Abderrahmane, B., & Bui, D. T. (2018). Landslide susceptibility assessment at Mila Basin (Algeria): A comparative assessment of prediction capability of advanced machine learning methods. ISPRS International Journal of Geo-Information, 7, 268. https://doi.org/10.3390/ijgi7070268.

    Article  Google Scholar 

  • Mondal, D., Gupta, S., Reddy, DV., Nagabhushanam, P. (2014). Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal Geochemical Exploration, 145, 190–206. http://dx.doi.org/10.1016/j.gexplo.2014.06.005.

  • Moustafa, S. S. R. (2015). Application of the analytic hierarchy process for evaluating geo-hazards in the greater Cairo area, Egypt. EJGE, 20. https://www.ejge.com/2015/Ppr2015.0207sb.pdf.

  • MOWR. (1999). Integrated water resource development—A plan for action. Report of the National Commission for Integrated Water Resources Development Plan, Ministry of Water Resources, Government of India, New Delhi.

    Google Scholar 

  • Nag, S. K. (2005). Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 33(4), 521–529. https://doi.org/10.1007/BF02990737.

    Article  Google Scholar 

  • Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • National Atlas and Thematic Mapping Organisation. (2009). Survey of India, Census of India published maps. NATMO, Kolkata.

    Google Scholar 

  • NRSC. (2017). Indian geo-platform of ISRP. https://bhuvan.nrsc.gov.in. Accessed January, 2017.

  • Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2014). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabean Journal of Geoscience. https://doi.org/10.1007/s12517-014-1668-4.

    Article  Google Scholar 

  • Razandi, Y., Pourghasemi, H. R., Samani-Neisani, N., Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Information, 8(4), 867–883. http://dx.doi.org/10.1007/s12145-015-0220-8.

  • Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied Water Science, 3(3), 345–352. https://doi.org/10.1007/s13201-015-0327-6.

    Article  Google Scholar 

  • Riad, P. H., Billib, M. H., Hassan, A. A., & Omar, M. A. (2011a). Water scarcity management in a semi-arid area in Egypt: Overlay weighted model and Fuzzy logic to determine the best locations for artificial recharge of groundwater. Nile Basin Water Science & Engineering Journal, 4(1), 24–35.

    Google Scholar 

  • Riad, P. H., Billib, M., Hassan, A. A., Salam, M. A., & El Din, M. N. (2011b). Application of the overlay weighted model and Boolean logic to determine the best locations for artificial recharge of groundwater. Journal of Urban and Environmental Engineering, 5(2), 57–66.

    Article  Google Scholar 

  • Saaty, T. L. (1996). Decision making with dependence and feedback, the analytic network process. Pittsburgh: RWS Publications.

    Google Scholar 

  • Saaty, T. L. (1999). Fundamentals of the analytic network process; International Symposium of the Analytic Hierarchy Process (ISAHP). Japan: Kobe.

    Google Scholar 

  • Saaty, T. L. (2004). Fundamentals of the analytic network process—Multiple networks with benefits, costs, opportunities and risks. Journal of Systems Science and Systems Engineering, 13(3), 348–379.

    Article  Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1). https://www.rafikulislam.com/uploads/resourses/197245512559a37aadea6d.pdf.

  • Sahin, E. K., Ipbuker, C., & Kavzoglu, T. (2017). Investigation of automatic feature weighting methods (fisher, chi-square and relief-F) for landslide susceptibility mapping. Geocarto International, 32(9), 956–977. https://doi.org/10.1080/10106049.2016.1170892.

    Article  Google Scholar 

  • Samadder, R. K., Kumar, S., & Gupta, R. P. (2012). Palaeochannels and their potential for artificial groundwater recharge in the western Ganga plains. Journal of Hydrology, 400(2011), 154–164. https://doi.org/10.1016/j.jhydrol.2011.01.039.

    Article  Google Scholar 

  • Saraf, A., & Choudhary, P. R. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge site. International Journal of Remote Sensing, 19, 1825–1841.

    Article  Google Scholar 

  • Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2016). Application of geoinformatics for groundwater prospects zones—A case study for Vaniyar sub Basin of Ponnaiyar River in South India. Indian Journal of Applied Research, 6(2), 310–313.

    Google Scholar 

  • Scanlon, B. R., et al (2008). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. In Proceedings of the national Academy of Sciences of the United State of America, 109(24), 9320–9325. http://www.pnas.org/content/109/24/9320.full.pdf.

  • Selvam, S., Magesh, N. S., Chidambaram, S., Rajamanickam, M., & Sashikkumar, M. C. (2015). A GIS based identification of groundwater recharge potential zones using RS and IF technique: A case study in Ottapidaram taluk, Tuticorin district Tamil Nadu. Environmental Earth Science, 73, 3785–3799.

    Article  Google Scholar 

  • Selvarani, A. G., Elangovan, K., & Kumar, C. S. (2016). Evaluation of groundwater potential zones using electrical resistivity and GIS in Noyyal river basin, Tamil Nadu. Journal of Geological Society of India, 87, 573. https://doi.org/10.1007/s12594-016-0431-8.

    Article  Google Scholar 

  • Senanayake, I. P., Dissanayake, D., Mayadunna, B. B., & Weerasekera, W. L. (2015). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1), 115–124. https://doi.org/10.1016/j.gsf.2015.03.002.

    Article  Google Scholar 

  • Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zone: The case of Occidental Lebanon. Hydrogeolgy Journal, 14(4), 433–443. https://doi.org/10.1007/s10040-005-0437-6.

    Article  Google Scholar 

  • Singh, L. K., Jha, M. K., & Chowdary, V. M. (2016). Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.11.163.

    Article  Google Scholar 

  • Statistical Handbook. (2012). District statistical book, department of planning & statistics, government of West Bengal. http://www.wbpspm.gov.in/publications/District%20Statistical%20Handbook (Accessed on 12 Feb. 2017, 2020).

  • Thapa, R., Gupta, S., Guin, S., & Kaur, H. (2017c). Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Applied Water Sciences, 7(7), 4117–4131. https://link.springer.com/article/10.1007/s13201-017-0571-z.

  • Thapa, R., Gupta, S., Guin, S., & Kaur, H. (2018c). Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: A comparative approach between vulnerability models. Water Sciences, 32(1), 44–66. https://doi.org/10.1016/j.wsj.2018.02.003.

  • Thapa, R., Gupta, S., Gupta, A., Reddy, D. V., & Kaur, H. (2017d). Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeology Journal, 26(3), 899–922. https://doi.org/10.1007/s10040-017-1683-0.

  • Thapa, R., Gupta, S., Gupta, A., Reddy, D. V., & Kaur, H. (2018d). Geochemical and geostatistical appraisal of fluoride contamination: An insight into the quaternary aquifer. Science of the Total Environment, 640–641(2018), 406–418. https://doi.org/10.1016/j.scitotenv.2018.05.360.

  • Thapa, R., Gupta, S., & Kaur, H. (2017b). Delineation of potential fluoride contamination zones in Birbhum, West Bengal, India, using remote sensing and GIS techniques. Arabian Journal of Geosciences, 10, 527. https://doi.org/10.1007/s12517-017-3328-y.

  • Thapa, R., Gupta, S., Kaur, H., & Mandal, R. (2018a). Assessment of manganese contamination in groundwater using frequency ratio (FR) modeling and GIS: A case study on Burdwan district, West Bengal, India. Modeling Earth Systems and Environment, 4(1), 161–174. https://doi.org/10.1007/s40808-018-0433-11.

  • Thapa, R., Gupta, S., Kaur, H., & Rajak, S. (2018b). Search for potential iron contamination zones in Burdwan district: An approach through fuzzy logic. Sustainable Water Resources Management, 1–15. https://doi.org/10.1007/s40899-018-0277-x.

  • Thapa, R., Gupta, S., & Reddy, D. V. (2017a). Application of geospatial modelling technique in delineation of fluoride contamination zones within Dwarka Basin, Birbhum, India. Geoscience Frontiers, 8(2017), 1105–1114. https://doi.org/10.1016/j.gsf.2016.11.006.

  • Thapa, R., Gupta, S., Reddy, D. V., & Kaur, H. (2017e). An evaluation of irrigation water suitability in the Dwarka river basin through the use of GIS based modeling. Environmental Earth Science, 76, 471. https://doi.org/10.1007/s12665-017-6804-5.

  • Thapa, R., Gupta, S., Reddy, D. V., & Kaur, H. (2018e). Comparative evaluation of water quality zonation within Dwarka river basin, India. Hydrological Sciences Journal, 63(4), 583–595. https://doi.org/10.1080/02626667.2018.1445255.

  • Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in Northern India, from satellite gravity observations. Geophysical Research Letters, 36, 1–5.

    Article  Google Scholar 

  • Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed., p. 636). NJ: Wiley.

    Google Scholar 

  • Turker, U., Alsalabi, B. S., & Rızza, T. (2013). Water table fluctuation analyses and associated empirical approach to predict spatial distribution of water table at Yesilkoy/AgiosAndronikos aquifer. Environmental Earth Science, 69, 63–75. https://doi.org/10.1007/s12665-012-1934-2.

    Article  Google Scholar 

  • Vijay Prabhu, M., Venkateswaran, S., & Kannan, R. (2016). Identification of potential groundwater recharge zones in Sarabanga sub basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Indian Journal of Applied Research, 6(2), 355–360.

    Google Scholar 

  • WBPhed. (2017). West Bengal public health engineering department, Government of West Bengal. https://www.wbphed.gov.in/. Accessed January, 2017.

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian river, Taiwan. Sustainble Environment Research, 26, 33–43. https://doi.org/10.1016/j.serj.2015.09.005.

    Article  Google Scholar 

  • Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geolgy, 58, 185. https://doi.org/10.1007/s00254-008-1504-9.

    Article  Google Scholar 

  • Zaidi, F. K., Kassem, O. M. K., Al-Bassam, A. M., & Al-Humidan, S. (2015). Factors governing groundwater chemistry in paleozoic sedimentary aquifers in an arid environment: A case study from Hail Province in Saudi Arabia. Arabian Journal of Science and Engineering, 40, 1977. https://doi.org/10.1007/s13369-014-1534-4.NATMO(2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the SERB, India for financial assistance in the project (project No. SB/ES-687/2013 dated 24.03.2015) and also acknowledge DST, Govt. of India for providing financial support to setup a sophisticated laboratory in the Department of Environmental Science under FIST programme. The authors would also like to thank Central Ground Water Board, Survey of India and Geological Survey of India for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimanta Gupta .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thapa, R., Gupta, S., Kaur, H. (2021). Mapping Groundwater Recharge Potential Zones Using GIS Approaches and Trend of Water Table Fluctuation in Birbhum District, West Bengal, India. In: Adhikary, P.P., Shit, P.K., Santra, P., Bhunia, G.S., Tiwari, A.K., Chaudhary, B.S. (eds) Geostatistics and Geospatial Technologies for Groundwater Resources in India. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-62397-5_23

Download citation

Publish with us

Policies and ethics