Skip to main content

Fenestrated Capillary and Dynamic Neuro-Glial-Vascular Reorganization of the Adult Neurohypophysis

  • Chapter
  • First Online:
Glial-Neuronal Signaling in Neuroendocrine Systems

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 11))

  • 440 Accesses

Abstract

It is well known that dynamic structural reorganization occurs in the adult mammalian neurohypophysis (NH) in response to chronic physiological stimulation such as osmotic stimulation and lactation. Neurohypophysial glial cells, pituicytes engulf axon terminals and interpose between the axon terminals and fenestrated capillaries under healthy normal conditions, whereas chronic physiological stimulation increases the neuro-vascular contact area via the retraction of pituicyte cellular processes. Recent evidence shows that an activity-dependent shape conversion of perivascular pericytes also participates in increasing the neuro-vascular contact area by extension of the pericyte cellular processes. In addition to the rapid activity-dependent responses of pituicytes and pericytes, angiogenesis and gliogenesis also occur to maintain a proper population density of pituicytes and endothelial cells. I will describe in this chapter how glial–neuronal or axonal–glial interactions modulate neuropeptide diffusion from the NH into the blood circulation. In conclusion, the NH has more dynamic and complicated mechanisms of structural reorganization than we have previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 2:648–672

    Article  Google Scholar 

  • Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proc 11:32–51

    Article  CAS  Google Scholar 

  • Furube E, Mannari T, Morita S, Nishikawa K, Yoshida A, Itoh M, Miyata S (2014) VEGF-dependent and PDGF-dependent dynamic neurovascular reconstruction in the neurohypophysis of adult mice. J Endocrinol 221:161–179

    Article  Google Scholar 

  • Gerhardt H, Golding M, Fruttinger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF-A guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    Article  CAS  PubMed  Google Scholar 

  • Lafont C, Desarménien MG, Cassou M, Molino F, Lecoq J, Hodson D, Lacampagne A, Mennessier G, El Yandouzi T, Carmignac D, Fontanaud P, Christian H, Coutry N, Fernandez-Fuente M, Charpak S, Le Tissier P, Robinson IC, Mollard P (2010) Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function. Proc Natl Acad Sci USA 107:4465–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B (2013) Tanycyte- like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521:3389–3405

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsunaga W, Miyata S, Kiyohara T (1999) Redistribution of MAP2 immunoreactivity in the neurohypophysial astrocytes of adult rats during dehydration. Brain Res 829:7–17

    Article  CAS  PubMed  Google Scholar 

  • Miyata S (2015) New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci 9:390

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyata S (2017) Advances in understanding of structural reorganization in the hypothalamic neurosecretory system. Front Endocrinol 8:275

    Article  Google Scholar 

  • Miyata S, Hatton GI (2002) Activity-related, dynamic neuron-glial interactions in the hypothalamo- neurohypophysial system. Microsc Res Tech 56:143–157

    Article  CAS  PubMed  Google Scholar 

  • Miyata S, Furuya K, Nakai S, Bun H, Kiyohara T (1999) Morphological plasticity and rearrangement of cytoskeletons in pituicytes cultured from adult rat neurohypophysis. Neurosci Res 33:299–306

    Article  CAS  PubMed  Google Scholar 

  • Miyata S, Takamatsu H, Maekawa S, Matsumoto N, Watanabe K, Kiyohara T, Hatton GI (2001) Plasticity of neurohypophysial terminals with increased hormonal release during dehydration: ultrastructural and biochemical analyses. J Comp Neurol 434:413–427

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Miyata S (2012) Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain. Cell Tissue Res 349:589–603

    Google Scholar 

  • Nishikawa K, Furube E, Morita S, Horii-Hayashi N, Nishi M, Miyata S (2017) Structural reconstruction of the perivascular space in the adult mouse neurohypophysis during an osmotic stimulation. J Neuroendocrinol 29(2)

    Google Scholar 

  • Rosso L, Mienville JM (2009) Pituicyte modulation of neurohormone output. Glia 57:235–243

    Article  PubMed  Google Scholar 

  • Smithson KG, Suarez I, Hatton GI (1990) Beta-adrenergic stimulation decreases glial and increases neural contact with the basal lamina in rat neurointermediate lobes incubated in vitro. J Neuroendocrinol 2:693–699

    Article  CAS  PubMed  Google Scholar 

  • Tasker JG, Oliet SH, Bains JS, Brown CH, Stern JE (2012) Glial regulation of neuronal function: from synapse to systems physiology. J Neuroendocrinol 24:566–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tweedle CD, Hatton GI (1982) Magnocellular neuropeptidergic terminals in neurohypophysis: rapid glial release of enclosed axons during parturition. Brain Res Bull 8:205–209

    Article  CAS  PubMed  Google Scholar 

  • Virard I, Gubkina O, Alfonsi F, Durbec P (2008) Characterization of heterogeneous glial cell populations involved in dehydration-induced proliferation in the adult rat neurohypophysis. Neuroscience 151:82–91

    Article  CAS  PubMed  Google Scholar 

  • Wittkowski W, Brinkmann H (1974) Changes of extent of neuro-vascular contacts and number of neuro-glial synaptoid contacts in the pituitary posterior lobe of dehydrated rats. Anat Embryol 146:157–165

    Article  CAS  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Miyata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyata, S. (2021). Fenestrated Capillary and Dynamic Neuro-Glial-Vascular Reorganization of the Adult Neurohypophysis. In: Tasker, J.G., Bains, J.S., Chowen, J.A. (eds) Glial-Neuronal Signaling in Neuroendocrine Systems. Masterclass in Neuroendocrinology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-62383-8_3

Download citation

Publish with us

Policies and ethics