Skip to main content

Functional Consequences of Morphological Plasticity in the Adult Hypothalamo-Neurohypophysial System

  • Chapter
  • First Online:
Glial-Neuronal Signaling in Neuroendocrine Systems

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 11))

  • 445 Accesses

Abstract

The adult hypothalamo-neurohypophysial system (HNS) comprises the cell bodies of the magnocellular neurons of the hypothalamus, located in the supraoptic and paraventricular nuclei, and their axons that project onto the neurohypophysis, where they release oxytocin and vasopressin directly in the bloodstream. Oxytocin governs parturition and lactation, while vasopressin is the antidiuretic hormone and a vasopressor. The HNS undergoes a remarkable reversible, activity-dependent morphological neuroglial plasticity during lactation and dehydration. Here we summarize how this made it a seminal model to study the physiological contribution of the astrocytic environment to synaptic signaling. We show first that reduction in glial processes modifies local glutamate level at the synapse by reducing its uptake, and thus affects homosynaptic strength. Second, it also changes neurotransmitter diffusion, and as a result contributes to inter-synaptic crosstalk between glutamate and GABAergic inputs through metabotropic and kainate receptors. Finally it hampers the contribution of astrocytes to glutamatergic synaptic communication through d-serine gliotransmission. Astrocytes thus dynamically dictate the tenor of brain signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong WE (2015) Hypothalamic supraoptic and paraventricular nuclei. In: Paxinos G (ed) The rat nervous system, 4th edn. Elsevier, Sydney, pp 295–314

    Chapter  Google Scholar 

  • Bonfardin VD, Fossat P, Theodosis DT et al (2010) Glia-dependent switch of kainate receptor presynaptic action. J Neurosci 30:985–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudaba C, Linn DM, Halmos KC et al (2003) Increased tonic activation of presynaptic metabotropic glutamate receptors in the rat supraoptic nucleus following chronic dehydration. J Physiol 551:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 9:519–531

    Article  CAS  PubMed  Google Scholar 

  • Brown CH, Bains JS, Ludwig M et al (2013) Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 25:678–710

    Article  CAS  PubMed  Google Scholar 

  • Catheline G, Touquet B, Lombard MC et al (2006) A study of the role of neuro-glial remodeling in the oxytocin system at lactation. Neuroscience 137:309–316

    Article  CAS  PubMed  Google Scholar 

  • Choe KY, Olson JE, Bourque CW (2012) Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci 32:12518–12527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deleuze C, Alonso G, Lefevre IA et al (2005) Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication. Neuroscience 133:175–183

    Article  CAS  PubMed  Google Scholar 

  • Di S, Popescu IR, Tasker JG (2013) Glial control of endocannabinoid heterosynaptic modulation in hypothalamic magnocellular neuroendocrine cells. J Neurosci 33:18331–18342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiacco TA, McCarthy KD (2018) Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 38:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon GR, Baimoukhametova DV, Hewitt SA et al (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Hussy N, Deleuze C, Desarmenien MG et al (2000) Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol 62:113–134

    Article  CAS  PubMed  Google Scholar 

  • Jourdain P, Israel JM, Dupouy B et al (1998) Evidence for a hypothalamic oxytocin-sensitive pattern-generating network governing oxytocin neurons in vitro. J Neurosci 18:6641–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig M, Stern J (2015) Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc B Biol Sci 370:1672

    Article  Google Scholar 

  • Miyata S, Hatton GI (2002) Activity-related, dynamic neuron-glial interactions in the hypothalamo-neurohypophysial system. Microsc Res Tech 56:143–157

    Article  CAS  PubMed  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP et al (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Vallée J, Haber M et al (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Henneberger C, Rusakov DA et al (2017) Astroglial versus neuronal d-serine: fact checking. Trends Neurosci 40:517–520

    Article  CAS  PubMed  Google Scholar 

  • Piet R, Bonhomme R, Theodosis DT et al (2003) Modulation of GABAergic transmission by endogenous glutamate in the rat supraoptic nucleus. Eur J Neurosci 17:1777–1785

    Article  PubMed  Google Scholar 

  • Piet R, Vargová L, Syková E et al (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A 101:2151–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurons secreting oxytocin and vasopressin. Neuroscience 7:773–808

    Article  CAS  PubMed  Google Scholar 

  • Salm AK (2000) Mechanisms of glial retraction in the hypothalamo-neurohypophysial system of the rat. Exp Physiol 85 Spec No:197S–202S

    Google Scholar 

  • Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodosis DT, Piet R, Poulain DA et al (2004) Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional consequences and role of cell surface and extracellular matrix adhesion molecules. Neurochem Int 45:491–501

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Balu DT, Coyle JT (2016) The rise and fall of the d-serine -mediated gliotransmission hypothesis. Trends Neurosci 39:712–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Recommended Reading

  • Tasker JG, Voisin DL, Armstrong WE (2017) The cell biology of oxytocin and vasopressin cells. In: Pfaff DW, Joëls M (eds) Hormones, brain, and behavior, 3rd edn. Academic, Oxford, pp 305–336

    Chapter  Google Scholar 

  • Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88:983–1008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Voisin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voisin, D.L., Panatier, A., Oliet, S.H.R. (2021). Functional Consequences of Morphological Plasticity in the Adult Hypothalamo-Neurohypophysial System. In: Tasker, J.G., Bains, J.S., Chowen, J.A. (eds) Glial-Neuronal Signaling in Neuroendocrine Systems. Masterclass in Neuroendocrinology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-62383-8_2

Download citation

Publish with us

Policies and ethics