Skip to main content

Probabilistic Free Vibration Analysis of Functionally Graded Beams Using Stochastic Finite Element Methods

  • Conference paper
  • First Online:
Computational Intelligence Methods for Green Technology and Sustainable Development (GTSD 2020)

Abstract

In this study, we use the stochastic finite element method for vibration analysis of functionally graded (FG) Euler-Bernoulli beams considering variability in material properties. The selected FG material consists of a mix of ceramic and metal constituents. The material properties of the FG beams studied are assumed to vary smoothly over the depth according to a power law. Constituent material properties such as the Young’s modulus, mass density and volume fraction index are modeled as random variables. For each simulation of these random parameters, finite element method is employed to estimate natural frequencies of FG beam. Several simulations need to be carried out for propagating overall inputs uncertainty to stochastic frequencies that are approximated as a series in an orthogonal space. The components of series will be determined based on both polynomial chaos expansion (PCE) and stochastic collocation (SC) methods. For PCE, the multivariate Hermite orthogonal functions are derived using Askey scheme. Their coefficients are estimated using both spectral projection, linear regression approaches. Standard tensor product is used to integrate the multi-dimensional integrals. In term of SC method, basis functions are Lagrange interpolation functions formed for known coefficients called collocation points. Post-analysis including reliability, sensitivity and distribution of uncertain frequencies are also studied. These results will also be compared with those of Monte Carlo Simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, B.M., Ebeida, M.S., Eldred, M.S., Jakeman, J.D., Swiler, L.P., Stephens, J.A., Vigil, D.M., Wildey, T.M., Bohnhoff, W.J., Eddy, J.P., et al.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (2014)

    Google Scholar 

  2. Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilist. Eng. Mech. 25(2), 183–197 (2010)

    Article  Google Scholar 

  3. Bressolette, P., Fogli, M., Chauvière, C.: A stochastic collocation method for large classes of mechanical problems with uncertain parameters. Probabilist. Eng. Mech. 25(2), 255–270 (2010)

    Article  Google Scholar 

  4. Council, N.R.: Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification. The National Academies Press, Washington, DC (2012)

    Google Scholar 

  5. García-Macías, E., Castro-Triguero, R., Friswell, M.I., Adhikari, S., Sáez, A.: Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates. Compos. Struct. 152, 183–198 (2016)

    Article  Google Scholar 

  6. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach (Revised Edition). Dover, New York (2003)

    Google Scholar 

  7. Ghosh, D., Farhat, C.: Strain and stress computations in stochastic finite element methods. Int. J. Numer. Meth. Eng. 74(8), 1219–1239 (2008)

    Article  MathSciNet  Google Scholar 

  8. Gupta, A., Talha, M.: Recent development in modeling and analysis of functionally graded materials and structures. Progr. Aerosp. Sci. 79, 1–14 (2015)

    Article  Google Scholar 

  9. Hosder, S., Walters, R.W., Balch, M.: Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics. AIAA J. 48(12), 2721–2730 (2010)

    Article  Google Scholar 

  10. Lan, J., Dong, X., Peng, Z., Zhang, W., Meng, G.: Uncertain eigenvalue analysis by the sparse grid stochastic collocation method. Acta Mechanica Sinica 31(4), 545–557 (2015)

    Article  MathSciNet  Google Scholar 

  11. Li, J., Tian, X., Han, Z., Narita, Y.: Stochastic thermal buckling analysis of laminated plates using perturbation technique. Compos. Struct. 139, 1–12 (2016)

    Article  Google Scholar 

  12. Lopez, R., Torii, A., Miguel, L., Cursi, J.S.: Overcoming the drawbacks of the form using a full characterization method. Struct. Saf. 54, 57–63 (2015)

    Article  Google Scholar 

  13. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  Google Scholar 

  14. Shaker, A., Abdelrahman, W., Tawfik, M., Sadek, E.: Stochastic finite element analysis of the free vibration of functionally graded material plates. Comput. Mech. 41(5), 707–714 (2008)

    Article  Google Scholar 

  15. Shegokar, N.L., Lal, A.: Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermo electromechanical loadings with random material properties. Compos. Struct. 100, 17–33 (2013)

    Article  Google Scholar 

  16. Shegokar, N.L., Lal, A.: Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties. Meccanica 49(5), 1039–1068 (2014)

    Article  MathSciNet  Google Scholar 

  17. Stefanou, G.: The stochastic finite element method: past, present and future. Comput. Meth. Appl. Mech. Eng. 198(9), 1031–1051 (2009)

    Article  Google Scholar 

  18. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  19. Talha, M., Singh, B.: Stochastic perturbation-based finite element for buckling statistics of FGM plates with uncertain material properties in thermal environments. Compos. Struct. 108, 823–833 (2014)

    Article  Google Scholar 

  20. Talha, M., Singh, B.: Stochastic vibration characteristics of finite element modelled functionally gradient plates. Compos. Struct. 130, 95–106 (2015)

    Article  Google Scholar 

  21. Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)

    Article  Google Scholar 

  22. Xiu, D., Karniadakis, G.E.: The wiener-askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002). https://doi.org/10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, Y., Qian, Y., Chen, J., Song, G.: Stochastic dynamic characteristics of FGM beams with random material properties. Compos. Struct. 133, 585–594 (2015)

    Article  Google Scholar 

  24. Xu, Y., Qian, Y., Song, G.: Stochastic finite element method for free vibration characteristics of random FGM beams. Appl. Math. Model. 40, 10238–10253 (2016)

    Article  MathSciNet  Google Scholar 

  25. Xu, Z., Zhou, T.: On sparse interpolation and the design of deterministic interpolation points. SIAM J. Sci. Comput. 36(4), A1752–A1769 (2014)

    Article  MathSciNet  Google Scholar 

  26. Yang, X., Lei, H., Baker, N.A., Lin, G.: Enhancing sparsity of hermite polynomial expansions by iterative rotations. J. Comput. Phys. 307, 94–109 (2016)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Q., Li, Z., Zhang, Z.: A sparse grid stochastic collocation method for elliptic interface problems with random input. J. Sci. Comput. 67(1), 262–280 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phong T. T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, P.T.T., Trinh, L.C., Nguyen, KT. (2021). Probabilistic Free Vibration Analysis of Functionally Graded Beams Using Stochastic Finite Element Methods. In: Huang, YP., Wang, WJ., Quoc, H.A., Giang, L.H., Hung, NL. (eds) Computational Intelligence Methods for Green Technology and Sustainable Development. GTSD 2020. Advances in Intelligent Systems and Computing, vol 1284. Springer, Cham. https://doi.org/10.1007/978-3-030-62324-1_44

Download citation

Publish with us

Policies and ethics