Skip to main content

The Link Between Life Cycle Inventory Analysis and Life Cycle Impact Assessment

  • Chapter
  • First Online:
Life Cycle Inventory Analysis

Abstract

In this chapter, the link between life cycle inventory analysis (LCI) and life cycle impact assessment (LCIA) is discussed. For the feasibility of conducting a life cycle assessment (LCA) and for making its results more robust, it is necessary that data collected in the LCI stage are suitable for the LCIA methods, and in particular for comparative studies, it is relevant to provide matching levels of detail for all compared options. Four illustrative examples are provided: (i) the differences in receiving compartment resolution for toxic emissions, (ii) differences in stressor resolution for particulate matter formation, (iii) lacking characterization factors for metal use, and (iv) lacking characterization factors for sum parameters and not fully specified emissions (such as BOD, TOC and “alkanes, unspecified”). Two important lessons to consider for maintaining a strong link between LCI and LCIA are highlighted based on these examples. First, it is suggested that it is important to have the same resolution between LCI data and LCIA methods. Scenario analysis, where different resolutions are assumed and tested, can be a strategy in cases where differences in resolutions are unavoidable. Second, ways to handle the absence of characterization factors are discussed, including the development of additional characterization factors that match the available LCI data and derivation of characterization factors from process information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeda R, Wambaugh Z, Chai C, Wang Z, Liu Z, Buskey EJ (2013) Effects of crude oil exposure on bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval stages of gelatinous zooplankton. PLoS One 8(10):e74476

    Article  CAS  Google Scholar 

  • Arvidsson R, Kushnir D, Molander S, Sandén BA (2016) Energy and resource use assessment of graphene as a substitute for indium tin oxide in transparent electrodes. J Clean Prod 132:289–297

    Article  CAS  Google Scholar 

  • Bergman Å, Heindel JJ, Jobling S, Kidd KA, Zoeller RT (2013) State of the science of endocrine disrupting chemicals – 2012. World Health Organization and United Nations Environmental Programme, Geneva

    Google Scholar 

  • Bulle C, Margni M, Patouillard L, Boulay A-M, Bourgault G, De Bruille V, Cao V, Hauschild M, Henderson A, Humbert S, Kashef-Haghighi S, Kounina A, Laurent A, Levasseur A, Liard G, Rosenbaum RK, Roy P-O, Shaked S, Fantke P, Jolliet OJTIJLCA (2019) IMPACT World+: a globally regionalized life cycle impact assessment method. Int J Life Cycle Assess 24(9):1653–1674

    Article  CAS  Google Scholar 

  • Drielsma JA, Russell-Vaccari AJ, Drnek T, Brady T, Weihed P, Mistry M, Simbor LP (2015) Mineral resources in life cycle impact assessment—defining the path forward. Int J Life Cycle Assess 21(1):85–105

    Article  Google Scholar 

  • Ecoinvent database (2013) Version 3.3, http://www.ecoinvent.org. Accessed 18 Apr 2017

  • Fedorov YN, Ivanov KS, Erokhin YV, Ronkin YL (2007) Inorganic geochemistry of the oil of West Siberia: first ICP-MS data. Dokl Earth Sci 414(4):634–637

    Article  CAS  Google Scholar 

  • Frischknecht R, Büsser Knöpfel S (2014) Ecological scarcity 2013—new features and its application in industry and administration—54th LCA forum, Ittigen/Berne, Switzerland, December 5, 2013. 19(6):1361–1366

    Google Scholar 

  • Frischknecht R, Jolliet O (2016) Global guidance for life cycle impact assessment indicators volume 1. United Nations Environment Programme, Paris

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2013) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and endpoint level. Dutch Ministry of Housing, Spatial Planning and Environment (VROM), The Hague

    Google Scholar 

  • Guinée JB (2015) Assignment of LCI results to impact categories. In: Hauschild M, Huijbregts MAJ (eds) Life cycle impact assessment. LCA compendium – the complete world of life cycle assessment (Klöpffer W, Curran MA, series eds). Springer, Dordrecht, pp 30–37

    Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Life cycle assessment: an operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Harremoës P, Gee D, MacGarvin M, Stirling A, Keys J, Wynne B, Guedes Vas S (2001) Late lessons from early warnings: the precautionary principle. European Environment Agency, Copenhagen, pp 1896–2000

    Google Scholar 

  • Hauschild MZ, Huijbregts MAJ (2015) Life cycle impact assessment. In: Klöpffer W, Curran MA (eds) LCA compendium - the complete world of life cycle assessment. Springer, Dordrecht

    Google Scholar 

  • Hauschild M, Potting J (2003) Spatial differentiation in life cycle impact assessment – the EDIP2003 methodology. Danish Environmental Protection Agency, Copenhagen

    Google Scholar 

  • Hauschild MZ, Huijbregts M, Jolliet O, Macleod M, Margni M, van de Meent D, Rosenbaum RK, McKone TE (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42(19):7032–7037

    Article  CAS  Google Scholar 

  • Höjer M, Ahlroth S, Dreborg K-H, Ekvall T, Finnveden G, Hjelm O, Hochschorner E, Nilsson M, Palm V (2008) Scenarios in selected tools for environmental systems analysis. J Clean Prod 16(18):1958–1970

    Article  Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinée JB, Jager T, Kalf D, Van De Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41(4):541–573

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira MDM, Hollander A, Zijp M, van Zelm R (2016) ReCiPe 2016 – a harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: characterization. Dutch National Institute for Public Health and the Environment, Bilthoven

    Google Scholar 

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22(2):138–147

    Article  Google Scholar 

  • Humbert S, De Schryver A, Margni M, Jolliet O (2012) IMPACT 2002+: User Guide. Quantis,

    Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208

    Article  Google Scholar 

  • Klinglmair M, Sala S, Brandão M (2014) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19(3):580–592

    Article  Google Scholar 

  • Köhler A (2006) Environmental assessment of industrial wastewater treatment processes and waterborne organic contaminant emissions. ETH

    Google Scholar 

  • Kushnir D, Sandén BA (2012) The time dimension and lithium resource constraints for electric vehicles. Resour Policy 37(1):93–103

    Article  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Tao CS, Jiang J, Tao M (2011) Natural resource limitations to terawatt-scale solar cells. Sol Energy Mater Sol Cells 95(12):3176–3180

    Article  CAS  Google Scholar 

  • WHO (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organisation, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Hildenbrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hildenbrand, J., Arvidsson, R. (2021). The Link Between Life Cycle Inventory Analysis and Life Cycle Impact Assessment. In: Ciroth, A., Arvidsson, R. (eds) Life Cycle Inventory Analysis . LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Cham. https://doi.org/10.1007/978-3-030-62270-1_9

Download citation

Publish with us

Policies and ethics