Skip to main content

Interpreting Heart Rate Variability in Sleep: Why, When, and How?

  • Chapter
  • First Online:
Autonomic Nervous System and Sleep

Abstract

Sleep and the autonomic nervous system (ANS) are biologically and clinically associated. Neuronal pathways located in the brain stem and basal forebrain responsible for the wake–sleep transition are connected with areas of the central nervous system regulating ANS activity. Indeed, at the forebrain diencephalic level, sleep itself may be considered to be one of the most highly integrated autonomic functions in which behavioral and homeostatic integration occurs. In turn, this integration is bidirectionally interconnected with the other hierarchical levels.

Thus, the peripheral autonomic motor activity (traditionally separated into sympathetic and parasympathetic components) cannot be considered truly autonomous, but rather an element of somatic and visceral motor regulation which occurs in various behaviors.

Attention to the powerful capacity of the continuous inflow of animal spirits into the heart may help clarify the difference between wakefulness and death and how the system may be driven to change from its natural constitution.

In this chapter, we will briefly summarize some of the physiopathological background that might help address the questions that are suggested by the vast amount of information continuously produced on the link between sleep and autonomic (dys)regulation. We do not delve so much, however, into the continuously evolving technical aspects (how and when) but wish to help interested readers to address the critical question that hovers at the heart of all experimental work and regards the choice of the appropriate technique of investigation: why should we use heart rate variability (HRV)?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinault JR. Hippocratic lives and legends. Studies in ancient medicine, vol. 4. EJ Brill: Leiden; 1992.

    Book  Google Scholar 

  2. Harvey W. The anatomical exercises: de motu cordis and de circulatione sanguinis. English translation. Keynes G, editor. New York: Dover; 1995.

    Google Scholar 

  3. Lower R. Tractatus de corde. Item de motu & colore sanguinis et chyli in eum transitu. London: Typis Jo Redmayne, impensiss Jacobi Allestry; 1669.

    Google Scholar 

  4. Wooley CF. Palpitation: brain, heart, and ‘spirits’ in the seventeenth century. J R Soc Med. 1998;91(3):157–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fye WB. Profiles in cardiology. Antonio Scarpa. Clin Cardiol. 1997;20(4):411–2.

    Article  CAS  PubMed  Google Scholar 

  6. Eknoyan G. Stephen Hales: the contributions of an enlightenment physiologist to the study of the kidney in health and disease. G Ital Nefrol. 2016;33(Suppl 66):33.S66.5.

    PubMed  Google Scholar 

  7. Rivera-Ruiz M, Cajavilca C, Varon J. Einthoven’s string galvanometer: the first electrocardiograph. Tex Heart Inst J. 2008;35(2):174–8.

    PubMed  PubMed Central  Google Scholar 

  8. Warner HR, Cox A. A mathematical model of heart rate control by sympathetic and vagus efferent information. Simulation. 1964;3(1):63–71.

    Article  Google Scholar 

  9. McSayers BA. Analysis of heart rate variability. Ergonomics. 1973;16(1):17–32.

    Article  Google Scholar 

  10. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2.

    Article  CAS  PubMed  Google Scholar 

  11. Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, et al. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation. 1997;95(6):1441–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bible Gateway. New international version. Acts 5 Ananias and Sapphira. https://www.biblegateway.com/passage/?search=Acts.5&version=NIV. Accessed 2 Aug 2020.

  13. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998;351(9101):478–84.

    Article  PubMed  Google Scholar 

  14. Breakspear M, Heitmann S, Daffertshofer A. Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front Hum Neurosci. 2010;4:190.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gerlach DA, Manuel J, Hoff A, Kronsbein H, Hoffmann F, Heusser K, et al. Novel approach to elucidate human baroreflex regulation at the brainstem level: pharmacological testing during fMRI. Front Neurosci. 2019;13:193.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dooley D. Wearable electronics market development status, emerging technologies, regional trends and comprehensive research study 2025. Press release. 1 Jul 2020. America news hour. https://www.americanewshour.com/2020/07/01/wearable-electronics-market-development-status-emerging-technologies-regional-trends-and-comprehensive-research-study-2025-2/375399. Accessed 2 Sep 2020.

  17. Solaro N, Malacarne M, Pagani M, Lucini D. Cardiac baroreflex, HRV, and statistics: an interdisciplinary approach in hypertension. Front Physiol. 2019;10:478.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karemaker JM. Heart rate variability: why do spectral analysis? Heart. 1997;77(2):99–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hess WR. The central control of the activity of internal organs. In: The Nobel Foundation, editor. Nobel lecture physiology or medicine 1942–1962. Amsterdam: Elsevier; 1964.

    Google Scholar 

  20. Haken H. Synergetics: an introduction: nonequilibrium phase transitions and self-organization in physics, chemistry and biology (Springer series in Synergetics). 3rd ed. Berlin: Springer Verlag; 1983.

    Google Scholar 

  21. Brown D. Origin. New York: Doubleday/Penguin Random House; 2017.

    Google Scholar 

  22. Langley JN. The autonomic nervous system. Cambridge: W. Heffer & Sons; 1921.

    Google Scholar 

  23. Sherrington CS. The integrative action of the nervous system. New Haven: Yale University Press; 1911.

    Book  Google Scholar 

  24. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.

    Article  CAS  PubMed  Google Scholar 

  25. Horn JP, Swanson LW. The autonomic motor system and the hypothalamus. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural science. 5th ed. New York: McGraw Hill; 2013. p. 1056–78.

    Google Scholar 

  26. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural science. 5th ed. New York: McGraw Hill; 2013.

    Google Scholar 

  27. Cersosimo MG, Benarroch EE. Central control of autonomic function and involvement in neurodegenerative disorders. Handb Clin Neurol. 2013;117:45–57.

    Article  PubMed  Google Scholar 

  28. Engel BT. Psychosomatic medicine, behavioral medicine, just plain medicine. Psychosom Med. 1986;48(7):466–79.

    Article  CAS  PubMed  Google Scholar 

  29. Pagani M, Malliani A. Interpreting oscillations of muscle sympathetic nerve activity and heart rate variability. J Hypertens. 2000;18(12):1709–19.

    Article  CAS  PubMed  Google Scholar 

  30. Massimini M, Porta A, Mariotti M, Malliani A, Montano N. Heart rate variability is encoded in the spontaneous discharge of thalamic somatosensory neurones in cat. J Physiol. 2000;526(Pt 2):387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res. 2015;116(12):2005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol. 2017;595(12):3919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yao G, Kang L, Li J, Long Y, Wei H, Ferreira CA, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun. 2018;9(1):5349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aristotle. On the soul. Parva naturalia. On breath. Trans. Hett WS. Loeb Classical Library 288. Cambridge, MA: Harvard University Press; 1957.

    Google Scholar 

  36. Hippocrates. Ancient medicine. Airs, waters, places. Epidemics 1 and 3. The Oath. Precepts. Nutriment. Trans. Jones WHS. Loeb Classical Library 147. Cambridge, MA: Harvard University Press; 1923.

    Google Scholar 

  37. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, et al. Advances in heart rate variability signal analysis: joint position statement by the e-cardiology ESC working group and the European heart rhythm association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17(9):1341–53.

    Article  PubMed  Google Scholar 

  38. La Rovere MT, Porta A, Schwartz PJ. Autonomic control of the heart and its clinical impact. A personal perspective. Front Physiol. 2020;11:582.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abboud FM. The Walter B. Cannon memorial award lecture, 2009. Physiology in perspective: the wisdom of the body. In search of autonomic balance: the good, the bad, and the ugly. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1449–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beissner F, Meissner K, Bär KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33(25):10503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Valenza G, Sclocco R, Duggento A, Passamonti L, Napadow V, Barbieri R, Toschi N. The central autonomic network at rest: uncovering functional MRI correlates of time-varying autonomic outflow. NeuroImage. 2019;197:383–90.

    Article  CAS  PubMed  Google Scholar 

  42. La Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, et al. Barorefiex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation. 2001;103(16):2072–7.

    Article  PubMed  Google Scholar 

  43. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation. 1996;93(5):1043–65.

    Article  Google Scholar 

  44. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.

    PubMed  PubMed Central  Google Scholar 

  45. Eckberg D. Sympathovagal balance: a critical appraisal. Circulation. 1997;96(9):3224–32.

    Article  CAS  PubMed  Google Scholar 

  46. Sleight P, Bernardi L. Sympathovagal balance (letter). Circulation. 1998;98(23):2640.

    Article  CAS  PubMed  Google Scholar 

  47. Malliani A, Pagani M, Montano N, Mela GS. Sympathovagal balance: a reappraisal. Circulation. 1998;98(23):2640–3.

    Article  CAS  PubMed  Google Scholar 

  48. Pagani M, Pizzinelli P, Bergamaschi M, Malliani A. A positive feedback sympathetic pressor reflex during stretch of the thoracic aorta in conscious dogs. Circ Res. 1982;50(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  49. Schwartz PJ, Pagani M, Lombardi F, Malliani A, Brown AM. A cardiocardiac sympathovagal reflex in the cat. Circ Res. 1973;32(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  50. Prechtl JC, Powley TL. B-afferents: a fundamental division of the nervous system mediating homeostasis? Behav Brain Sci. 1990;13(2):289–300.

    Article  Google Scholar 

  51. Warner HR, Russell RO. Effect of combined sympathetic and vagal stimulation on heart rate in the dog. Circ Res. 1969;24(4):567–73.

    Article  CAS  PubMed  Google Scholar 

  52. Sunagawa K, Kawada T, Nakahara T. Dynamic nonlinear Vago-sympathetic interaction in regulating heart rate. Heart Vessel. 1998;13(4):157–74.

    Article  CAS  Google Scholar 

  53. Malliani A, Pagani M. Afferent sympathetic nerve fibres with aortic endings. J Physiol. 1976;263(2):157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jänig W. The integrative action of the autonomic nervous system: neurobiology of homeostasis. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  55. Moruzzi G. Sleep and instinctive behavior. Arch Ital Biol. 1969;107(2):175–216.

    CAS  PubMed  Google Scholar 

  56. Hebb DO. A textbook of psychology. 3rd ed. Philadelphia: Saunders; 1966.

    Google Scholar 

  57. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.

    Article  CAS  PubMed  Google Scholar 

  58. Cortelli P, Parchi P, Contin M, Pierangeli G, Avoni P, Tinuper P, et al. Cardiovascular dysautonomia in fatal familial insomnia. Clin Auton Res. 1991;1(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  59. Richerson GB, Aston-Jones G, Saper CB. The modulatory functions of the brain stem. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural science. 5th ed. New York: McGraw Hill; 2013. p. 1038–55.

    Google Scholar 

  60. Guazzi M, Malliani A, Zanchetti A. Reflex regulation of consciousness and emotional behaviour. Acta Neurochir. 1964;12(2):198–214.

    Article  Google Scholar 

  61. Koch E. Die Irradiation der pressoreceptorischen Kreislaufreflexe. KlinWschr. 1932;11:225–7.

    Google Scholar 

  62. Bizzi E, Libretti A, Malliani A, Zanchetti A. Reflex chemoceptive excitation of diencephalic sham rage behavior. Am J Physiol Content. 1961;200(5):923–6.

    Article  Google Scholar 

  63. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178–93.

    Article  CAS  PubMed  Google Scholar 

  64. Williams DWP, Koenig J, Carnevali L, Sgoifo A, Jarczok MN, Sternberg EM, et al. Heart rate variability and inflammation: a meta-analysis of human studies. Brain Behav Immun. 2019;80:219–26.

    Article  PubMed  Google Scholar 

  65. Föhr T, Pietilä J, Helander E, Myllymäki T, Lindholm H, Rusko H, et al. Physical activity, body mass index and heart rate variability-based stress and recovery in 16 275 Finnish employees: a cross-sectional study. BMC Public Health. 2016;16:701.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Abboud FM, Thames MD. Interaction of cardiovascular reflexes in circulatory control. In: Terjung R, editor. Compr physiol. Hoboken: Wiley; 2011. p. 675–753.

    Google Scholar 

  67. Milani RV, Bober RM, Lavie CJ. The role of technology in chronic disease care. Prog Cardiovasc Dis. 2016;58(6):579–83.

    Article  PubMed  Google Scholar 

  68. Chouchou F, Desseilles M. Heart rate variability: a tool to explore the sleeping brain? Front Neurosci. 2014;8:402.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kollai M, Koizumi K. Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart. J Auton Nerv Syst. 1979;1(1):33–52.

    Article  CAS  PubMed  Google Scholar 

  70. Malik M, John Camm A, Thomas Bigger J, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043–65.

    Article  Google Scholar 

  71. Kerkhof PLM, Peace RA, Handly N. Ratiology and a complementary class of metrics for cardiovascular investigations. Physiology. 2019;34(4):250–63.

    Article  PubMed  Google Scholar 

  72. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.

    Article  CAS  PubMed  Google Scholar 

  73. Ahn AC, Tewari M, Poon CS, Phillips RS. The clinical applications of a systems approach. PLoS Med. 2006 Jul;3(7):e209.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lucini D, Solaro N, Pagani M. May autonomic indices from cardiovascular variability help identify hypertension? J Hypertens. 2014;32(2):363–73.

    Article  CAS  PubMed  Google Scholar 

  75. Gerstner W, Kreiter AK, Markram H, Herz AVM. Neural codes: firing rates and beyond. Proc Natl Acad Sci USA. 1997;94(24):12740–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sala R, Malacarne M, Solaro N, Pagani M, Lucini D. A composite autonomic index as unitary metric for heart rate variability: a proof of concept. Eur J Clin Investig. 2017;47(3):241–9.

    Article  Google Scholar 

  77. Lucini D, Solaro N, Pagani M. Autonomic differentiation map: a novel statistical tool for interpretation of heart rate variability. Front Physiol. 2018;9:401.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Macnish R. The philosophy of sleep. 1st American ed. New York: Appleton; 1834.

    Google Scholar 

  79. Hobson JA. Sleep. Scientific American library series, no. 27. New York: Scientific American Library: distributed by W.H. Freeman; 1989.

    Google Scholar 

  80. Von Economo C. Die Encephalitis lethargica. Leipzig/Wein: Franz Deuticke; 1918.

    Google Scholar 

  81. Hess WR. Das Schlafsyndrom als Folge diencephaler Reizung. Helv Physiol Pharmacol Acta. 1944;2:305–44.

    Google Scholar 

  82. Berger H. Über das Elektrenkephalogramm des Menschen. Arch f Psychiatrie. 1929;87:527–70.

    Article  Google Scholar 

  83. Davis H, Davis PA, Loomis AL, Harvey EN, Hobart G. Changes in human brain potentials during the onset of sleep. Science. 1937;86(2237):448–50.

    Article  CAS  PubMed  Google Scholar 

  84. Davis H, Davis PA, Loomis AL, Harvey EN, Hobart G. Human brain potentials during the onset of sleep. J Neurophysiol. 1938;1(1):24–38.

    Article  Google Scholar 

  85. Loomis AL, Harvey EN, Hobart GA. Cerebral states during sleep, as studied by human brain potentials. J Exp Psychol. 1937;21(2):127–44.

    Article  Google Scholar 

  86. Blake H, Gerard RW. Brain potentials during sleep. Am J Phys. 1937;119(4):692–703.

    Article  Google Scholar 

  87. Blake H, Gerard RW, Kleitman N. Factors influencing brain potentials during sleep. J Neurophysiol. 1939;2(1):48–60.

    Article  Google Scholar 

  88. Bremer F. Cerveau ‘isolé’ et physiologie du sommeil. Comptes rendus des séances et mémoires de la Société de biologie. 1935;118:1235–41.

    Google Scholar 

  89. Bremer F. Cerveau. Nouvelles recherches sur le mecanisme du sommeil. Comptes rendus des séances et mémoires de la Société de biologie. 1936;122:460–4.

    Google Scholar 

  90. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1(4):455–73.

    Article  CAS  PubMed  Google Scholar 

  91. Batini C, Moruzzi G, Palestini M, Gf R, Zanchetti A. Presistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science. 1958;128(3314):30–2.

    Article  CAS  PubMed  Google Scholar 

  92. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. 1953. J Neuropsychiatry Clin Neurosci. 2003;15(4):454–5.

    Article  PubMed  Google Scholar 

  93. Jouvet M, Michel F, Courjon J. On a stage of rapid cerebral electrical activity in the course of physiological sleep. C R Seances Soc Biol Fil. 1959;153:1024–8. (Article in French)

    CAS  PubMed  Google Scholar 

  94. Jouvet M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Arch Ital Biol. 1962;100:125–206. (Article in French)

    CAS  PubMed  Google Scholar 

  95. Jones BE. The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Med. 2018;49:14–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gutiérrez-Rivas E, de Andrés I, Gómez-Montoya J, Reinoso-Suárez F. The influence of the rostropontine-ventrolateral region on the sleep-wakefulness cycle. Experientia. 1978;34(1):61–2.

    Article  PubMed  Google Scholar 

  97. Chokroverty S. An overview of normal sleep. In: Chokorverty S, editor. Sleep disorders medicine: basic science, technical considerations, and clinical aspects. 3rd ed. Philadelphia: Saunders/Elsevier; 2009.

    Google Scholar 

  98. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328(5):303–7.

    Article  CAS  PubMed  Google Scholar 

  99. Benarroch EE. Autonomic neurology. (contemporary neurology series). New York: Oxford University Press; 2014.

    Google Scholar 

  100. Tononi G, Koch C. Consciousness: here, there and everywhere? Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1668):20140167.

    Article  Google Scholar 

  101. Calandra-Buonaura G, Provini F, Guaraldi P, Plazzi G, Cortelli P. Cardiovascular autonomic dysfunctions and sleep disorders. Sleep Med Rev. 2016;26:43–56.

    Article  PubMed  Google Scholar 

  102. Pagani M, Somers V, Furlan R, Dell’Orto S, Conway J, Baselli G, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12(6):600–10.

    Article  CAS  PubMed  Google Scholar 

  103. Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I, et al. Circadian variation in the frequency of sudden cardiac death. Circulation. 1987;75(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  104. Coccagna G, Mantovani M, Brignani F, Parchi C, Lugaresi E. Continuous recording of the pulmonary and systemic arterial pressure during sleep in syndromes of hypersomnia with periodic breathing. Bull Physiopathol Respir. 1972;8(5):1159–72.

    CAS  Google Scholar 

  105. Lugaresi E, Coccagna G, Mantovani M. Pathophysiological, clinical and nosographic considerations regarding hypersomnia with periodic breathing. Bull Physiopathol Respir. 1972;8(5):1249–56.

    CAS  Google Scholar 

  106. Tobaldini E, Nobili L, Strada S, Casali KR, Braghiroli A, Montano N. Heart rate variability in normal and pathological sleep. Front Physiol. 2013;4:294.

    Article  PubMed  PubMed Central  Google Scholar 

  107. de Zambotti M, Trinder J, Silvani A, Colrain IM, Baker FC. Dynamic coupling between the central and autonomic nervous systems during sleep: a review. Neurosci Biobehav Rev. 2018;90:84–103.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.

    Google Scholar 

  109. Hedner J, Ejnell H, Sellgren J, Hedner T, Wallin G. Is high and fluctuating muscle nerve sympathetic activity in the sleep apnoea syndrome of pathogenetic importance for the development of hypertension? J Hypertens Suppl. 1988;6(4):S529–31.

    Article  CAS  PubMed  Google Scholar 

  110. Vanninen E, Tuunainen A, Kansanen M, Uusitupa M, Lansimies E. Cardiac sympathovagal balance during sleep apnea episodes. Clin Physiol. 1996;16(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  111. Parati G, Di Rienzo M, Bonsignore MR, Insalaco G, Marrone O, Castiglioni P, et al. Autonomic cardiac regulation in obstructive sleep apnea syndrome: evidence from spontaneous baroreflex analysis during sleep. J Hypertens. 1997;15(12 Pt 2):1621–6.

    Article  CAS  PubMed  Google Scholar 

  112. Noda A, Yasuma F, Okada T, Yokota M. Circadian rhythm of autonomic activity in patients with obstructive sleep apnea syndrome. Clin Cardiol. 1998;21(4):271–6.

    Article  CAS  PubMed  Google Scholar 

  113. Cortelli P, Parchi P, Sforza E, Contin M, Pierangeli G, Barletta G, et al. Cardiovascular autonomic dysfunction in normotensive awake subjects with obstructive sleep apnoea syndrome. Clin Auton Res. 1994;4(1–2):57–62.

    Article  CAS  PubMed  Google Scholar 

  114. Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep. 1986;9(2):293–308.

    Article  CAS  PubMed  Google Scholar 

  115. Chiaro G, Calandra-Buonaura G, Cecere A, Mignani F, Sambati L, Loddo G, et al. REM sleep behavior disorder, autonomic dysfunction and synuclein-related neurodegeneration: where do we stand? Clin Auton Res. 2018;28(6):519–33.

    Article  PubMed  Google Scholar 

  116. Rocchi C, Placidi F, Liguori C, Del Bianco C, Lauretti B, Diomedi M, et al. Daytime autonomic activity in idiopathic rapid eye movement sleep behavior disorder: a preliminary study. Sleep Med. 2018;52:163–7.

    Article  PubMed  Google Scholar 

  117. Nhat HT. Old path, white clouds : walking in the footsteps of the Buddha. Berkeley: Parallax Press; 1991.

    Google Scholar 

  118. Pagani M, Lucini D, Porta A. Sympathovagal balance from heart rate variability: time for a second round? Exp Physiol. 2012;97(10):1141–2.

    Article  PubMed  Google Scholar 

  119. Heathers JA. Sympathovagal balance from heart rate variability: an obituary. Exp Physiol. 2012;97(4):556.

    Article  PubMed  Google Scholar 

  120. Pant S, Corsini C, Baker C, Hsia TY, Pennati G, Vignon-Clementel IE. Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability. J R Soc Interface. 2017;14(126):20160513.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation. 1992;85(1 Suppl):177–91.

    Google Scholar 

  122. Nolte IM, Munoz ML, Tragante V, Amare AT, Jansen R, Vaez A, et al. Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nat Commun. 2017;8:15805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tzu S, Giles L. The art of war. New York: Open Road Integrated Media, LLC; 2014. p. 64.

    Google Scholar 

  124. Sacristan JA. Clinical research and medical care: towards effective and complete integration. BMC Med Res Methodol. 2015;15:4.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Steinhubl SR. The future of individualized health maintenance. Nat Med. 2019;25(5):712–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagani, M., Guaraldi, P., Baschieri, F., Lucini, D., Cortelli, P. (2021). Interpreting Heart Rate Variability in Sleep: Why, When, and How?. In: Chokroverty, S., Cortelli, P. (eds) Autonomic Nervous System and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-030-62263-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62263-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62262-6

  • Online ISBN: 978-3-030-62263-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics