Skip to main content

Numerical Assessment of Electromagnetic Energy and Forces in Non-destructive Measurement Devices

  • Chapter
  • First Online:
Numerical Methods for Energy Applications

Part of the book series: Power Systems ((POWSYS))

  • 805 Accesses

Abstract

Non-destructive testing in the electromagnetic field is one of the fastest and least expensive testing techniques for pieces subject to degradation. This domain has evolved a lot in recent years, because of the increasing demands received by the scientific community from the industry. Non-destructive testing aims to detect defects (different types of cracks, structural inhomogeneity) in materials (conducting, ferromagnetic) without destroying the tested object. Therefore, the application of such techniques addresses many relevant domains that require high security of installations, domains such as aeronautical, nuclear, medical, or chemical industry. This chapter provides insight into the most commonly used non-destructive measurement devices, but also into the magnetic field analysis in nonlinear media. It presents the magnetization characteristic evaluation for ferromagnetic bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NDT:

Non-destructive testing

FEM:

Finite Element Method

FEM-BEM:

Finite Element Method—Boundary Element Method

SST:

Single Sheet Tester

VSM:

Vibrating Sample Magnetometer

EMF:

Electromotive force

PFPM:

Polarization of the Fixed-Point Method

B :

Magnetic flux density (induction)

H :

Magnetic field strength (intensity)

D :

Electric displacement

E :

Electric field strength

\(\varepsilon\) :

Absolute permittivity

\(\mu\) :

Absolute permeability

\(\Psi_{{S_{\Gamma } }}\) :

Electric flux

\(\Phi_{{S_{\Gamma } }}\) :

Magnetic flux

\(P\) :

Power

\(X_{k}\) :

Generalized force

\(dx_{k}\) :

Elementary variation

\(dL_{k}\) :

Elementary mechanical work

\(W\) :

Electromagnetic energy

w :

Volumetric density of electromagnetic field energy

\(W_{e}\) :

Energy of the electric field

\(W_{m}\) :

Energy of magnetic field

\(w_{h,cycle}\) :

Volumetric density of the energy transferred by the electromagnetic field to bodies during a full hysteresis cycle, electric and magnetic

\(w^{ * }\) :

Volume density of electromagnetic field coenergy

\(w_{e}^{ * }\) :

Volumetric density of electric coenergy

\(w_{m}^{ * }\) :

Volumetric density of magnetic coenergy

\(p_{h}\) :

Volumetric density of power transferred by the field

\(\overline{S}\) :

Poynting vector

J :

Current density

i :

Current

\(\left( \Sigma \right)\) :

Closed surface

\(\left( {V_{\Sigma } } \right)\) :

Domain bounded by the closed surface \(\left( \Sigma \right)\)

\(\left( {\Gamma_{el} } \right)\) :

Closed contour corresponding to electric hysteresis cycle

\(\left( {\Gamma_{mg} } \right)\) :

Closed contour corresponding to magnetic hysteresis cycle

\({\text{A}}_{{{\text{el}}}}\) :

Area of electric cycle

\({\text{A}}_{{{\text{mg}}}}\) :

Area of magnetic cycle

\(\overline{dA}\) :

Area element

References

  1. Stănculescu M (2009) Contribuţii la recunoaşterea formelor defectelor în defectoscopia magnetică nedistructivă (Contributions to flaw shape reconstruction in nondestructive testing). PhD thesis (in Romanian language), University “Politehnica” of Bucharest, Romania, 2008

    Google Scholar 

  2. SR EN ISO 9000-2001, Sisteme de management al calităţii. Principii fundamentale şi vocabular (Quality management systems. Vocabulary and fundamental principles)

    Google Scholar 

  3. www.asnt.org/ndt

  4. IzfP Fraunhofer-Institut for NDT. https://mm.fhg.de/depts/izfp-e.html

  5. Wenk SA, McMaster RC (1987) Choosing NDT: applications, costs and benefits of nondestructive testing in your quality assurance program. American Society for Nondestructive Testing, Columbus, OH

    Google Scholar 

  6. McMaster RC, Wenk SA (1951) A basic guide for management’s choice of nondestructive tests. Special technical publication no. 112. American Society for Testing and Materials, Philadelphia, PA

    Google Scholar 

  7. Juran JM (1988) JURAN’s quality control handbook, 4th edn. McGraw-Hill, NewYork

    Google Scholar 

  8. Diederichs R (2003) The advantages of the internet in the field of NDT, Internet article

    Google Scholar 

  9. Miller RK (1996) Nondestructive testing handbook, 2nd edn, vol 1, 2, 3, 4, 5, 6, 7, 8, 9 şi 10, American Society for Nondestructive Testing, USA

    Google Scholar 

  10. Cecco VS, Van Drunnen G, Sharp FL (1981) Eddy current manual: test method, vol 1, AECL-7523. Chalk River, Ontario

    Google Scholar 

  11. McMaster RC, McIntire P, Mester ML (eds) (1986) Non-destructive testing handbook: electromagnetic testing, vol 4, ASNT

    Google Scholar 

  12. de la Pintiere L (1985) Multifrequency eddy current examination of heat exchanger tubing. In: Lord W (ed) Electromagnetic methods for non-destructive testing. Gordon and Breach Science Publishers, New York, pp 195–303

    Google Scholar 

  13. Rao BPC, Baldev R, Jayakumar T, Kalyanasundaram P, Arnold W (2001) A new approach for restoration of Eddy current images. J Non-Destruct Eval 20:61–72

    Article  Google Scholar 

  14. Ramuhalli P (2002) Electromagnetic NDE signal inversion by function-approximation neural network. IEEE Trans Magn 38(6):3633–3642

    Article  Google Scholar 

  15. Takagi T, Miya K (2000) ECT Round-Robin test for steam generator tube. J Japanese Soc Appl Electromagn Mech 8:121–128

    Google Scholar 

  16. Chen Z, Miya K (1998) A new approach for optimal design of eddy current testing probes. J Nondestr Eval 17(3):105–116

    Google Scholar 

  17. Koch T, Browsing and searching internet resources. https://www.ub2.lu.se/nav_menu.html

  18. Nondestructive evaluation at SwRI. https://www.nde.swri.edu/index.html

  19. NTIAC. https://www.ntiac.com

  20. Center for Nondestructive Evaluation at Iowa State University. https://www.cnde.iastate.edu/

  21. European networks for structural integrity. https://science.jrc.nl/www/jrc/iam/sci-unit/networks/networks.html

  22. DGZfP: German NDT Society. https://www.dgzfp.de

  23. British Institute for NDT. https://www.powertech.co.uk/bindt/

  24. The Canadian Society for Nondestructive Testing. https://www.csndt.org/

  25. The NASA Technical Report Server. https://techreports.larc.nasa.gov/cgi-bin/NTRS

  26. Panametrics. https://www.panametrics.com

  27. Krautkramer. https://www.krautkramer.com

  28. IRT—Inspection Research Technology. https://www.irt.co.il

  29. Qnet. https://www.qnetworld.com

  30. ASTM E 1316–1992 terminology for nondestructive examination

    Google Scholar 

  31. Mihai C (2003) Procedee electromagnetice nedistructive pentru evaluarea defectelor în materiale (in Romanian language), PhD thesis

    Google Scholar 

  32. Raj B, Jayakumar T, Rao BPC (1995) Review of NDT techniques for structural integrity. Sadhana, Acad Proc Eng Sci 20:5–38

    Google Scholar 

  33. Nichols RW (1982) Advances in NDE for structural integrity. Applied Science Publishers, London

    Google Scholar 

  34. Bllitz J (2000) Electrical and magnetic methods for non-destructive testing. Adam Hilger, Bristol

    Google Scholar 

  35. Lovejoy DJ (1993) Magnetic particle inspection: a practical guide. Chapman & Hall

    Google Scholar 

  36. Borucki JS (1991) Development of automated magnetic particle testing systems. Mater Eval 49:324–329

    Google Scholar 

  37. Lord W (1985) Electromagnetic methods of NDT. Gordon and Breach, New York

    Google Scholar 

  38. Andrei P (2015) Dispozitiv de determinare a caracteristicii de primă magnetizare pentru materiale feromagnetice (Device for determining the first magnetization curve for ferromagnetic materials). PhD thesis, PhD supervisor, Prof. PhD. Eng. I.F. Hantila, University Politehnica of Bucharest

    Google Scholar 

  39. Păltânea V (2008) Sisteme Avansate de Caracterizare a Materialelor Magnetice Moi (Advanced systemd for soft magnetic materials characterization). PhD thesis, PhD supervisor: Prof. PhD. Eng. H. Gavrilă, Octombrie

    Google Scholar 

  40. Kappel W, Caracterizarea avansată şi industrială a oţelurilor magnetice, contract 57/B Ad 1411/97/VIII, I.C.P.E

    Google Scholar 

  41. IEC Standard Publication 60404—2, Methods of measurement of the magnetic properties of electrical steel sheet and strip by means of the Epstein frame. IEC Central Office, Geneva, 1996

    Google Scholar 

  42. Sievert J, Ahlers H, Fiorillo F, Rocchino L, Hall M, Henderson L (2001) Magnetic measurements on electrical steels using Epstein and SST methods. Summary report of the EUROMET comparison project no. 489, PTB–Bericht, E−74, pp 1–28

    Google Scholar 

  43. Fiorillo F (2004) Measurement and characterization of magnetic materials. Elsevier Academic Press

    Google Scholar 

  44. Noţingher P (1995) Etude du dispositif a bande unique dans les conditions extremes de caracterisation magnetique, Stage de fin d’etudes, L.E.G.-I.N.P.G

    Google Scholar 

  45. Farrell E, Allen CJ, Whilden MW, Tripp JH, Usoskin A, Sheth S, Brittenham GM (2007) Magnetic measurement of liver iron stores: engineering aspects of a new scanning susceptometer based on high-temperature superconductivity. IEEE Trans Magnet 43(11):4030–4036

    Article  Google Scholar 

  46. Tsukada K, Kiwa T (2007) Magnetic measurement of moisture content of grain. IEEE Trans Magnet Volo 43(6):2683–2685

    Article  Google Scholar 

  47. Zijlstra H (1967) Experimental methods in magnetism, vol IX, Measurement of magnetic quantities. North–Holland publishing company, Amsterdam

    Google Scholar 

  48. Ochiana G, Ochiana L, Stănculescu M (2011) Teoria câmpului electromagnetic (Electromagnetic field theory), Editura Printech, 2011, ISBN 978–606–521–756–0, (214 pagini) (cod CNCSIS 54)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Stanculescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanculescu, M., Andrei, P.C., Andrei, H., Deleanu, S., Bobaru, L. (2021). Numerical Assessment of Electromagnetic Energy and Forces in Non-destructive Measurement Devices. In: Mahdavi Tabatabaei, N., Bizon, N. (eds) Numerical Methods for Energy Applications. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-62191-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62191-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62190-2

  • Online ISBN: 978-3-030-62191-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics