Skip to main content

Anatomy and Topography of the Hypothalamus

  • Chapter
  • First Online:
The Human Hypothalamus

Abstract

The hypothalamus, lying on the central part of the brain, represents an intersection for many nervous pathways. Through the sensory inputs the hypothalamus detects changes in the internal and external environments. All these data put the hypothalamus in a key position to control many bodily functions using three major outputs: the autonomic, endocrine, and behavioural systems. The autonomic control contains hypothalamic neurons projected to the preganglionic neurons of the autonomic system, sympathetic and parasympathetic. The hypothalamo-hypophyseal axis allows the control of the endocrine system. In the relationship with the limbic system, the hypothalamus is involved in emotion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hofman MA, Swaab DF. Neuroplasticity in the human hypothalamus during ageing. NeuroImmune Biol. 2004;4:105–21.

    Article  Google Scholar 

  2. Ciofi P, Garret M, Lapirot O, Lafon P, Loyens A, Prévot V, Levine JE. Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology. 2009;150(12):5509–19. https://doi.org/10.1210/en.2009-0584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Truong HQ, Najera E, Zanabria-Ortiz R, Celtikci E, Sun X, Borghei-Razavi H, et al. Surgical anatomy of the superior hypophyseal artery and its relevance for endoscopic endonasal surgery. J Neurosurg. 2018;131(1):154–62. https://doi.org/10.3171/2018.2.JNS172959.

    Article  PubMed  Google Scholar 

  4. Doglietto F, Prevedello DM, Belotti F, Ferrari M, Lancini D, Schreiber A, et al. The superior hypophyseal arteries: anatomical study with an endoscopic endonasal perspective. Oper Neurosurg (Hagerstown). 2019;17(3):321–31. https://doi.org/10.1093/ons/opy393.

    Article  Google Scholar 

  5. Coote HJ, Spyer KM. Central control of autonomic function. Brain Neurosci Adv. 2018. https://doi.org/10.1177/2398212818812012.

  6. Giuliano F, Allard J. Dopamine and sexual function. Int J Impot Res. 2001;13:S18–28. https://doi.org/10.1038/sj.ijir.3900719.

    Article  PubMed  Google Scholar 

  7. Argiolas A, Melis MR. Central control of penile erection: role of the paraventricular nucleus of the hypothalamus. Prog Neurobiol. 2005;76(1):1–21. https://doi.org/10.1016/j.pneurobio.2005.06.002.

    Article  CAS  PubMed  Google Scholar 

  8. Parent AD, Perkins E. The hypothalamus. In: Fundamental neuroscience for basic and clinical applications. 5th ed. Philadelphia: Elsevier; 2018.

    Google Scholar 

  9. Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, et al. The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. NeuroImage Clin. 2018;18:770–83. https://doi.org/10.1016/j.nicl.2018.03.019.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wiltshire T, Maixner W, Diatchenko L. Relax, you won’t feel the pain. Nat Neurosci. 2011;14(12):1496–7. https://doi.org/10.1038/nn.2987.

    Article  CAS  PubMed  Google Scholar 

  11. Koch M, Varela L, Kim JG, Kim JD, Hernández-Nuño F, Simonds SE, et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature. 2015;519(7541):45–50. https://doi.org/10.1038/nature14260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. https://doi.org/10.1146/annurev-physiol-021909-135821.

    Article  CAS  PubMed  Google Scholar 

  13. MacGregor DJ, Leng G. Modelling the hypothalamic control of growth hormone secretion. J Neuroendocrinol. 2005 Dec;17(12):788-803. doi: 10.1111/j.1365-2826.2005.01370.x. PMID: 16280026.

    Google Scholar 

  14. Moore RY. The suprachiasmatic nucleus and the circadian timing system. Chronobiol Biol Timing Health Dis. 2013:1–28. https://doi.org/10.1016/b978-0-12-396971-2.00001-4.

  15. Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19:453–69. https://doi.org/10.1038/s41583-018-0026-z.

    Article  CAS  PubMed  Google Scholar 

  16. Lin K, Yang J, Xu XH, Shen WL. Hypothalamic circuit for thermoregulation. Proc Natl Acad Sci USA. 2017;114(8):2042–7. https://doi.org/10.1073/pnas.1616255114.

    Article  CAS  PubMed  Google Scholar 

  17. Morrison SF. Central control of body temperature. F1000 Research. 2016;5 F1000 Faculty Rev 880. https://doi.org/10.12688/f1000research.7958.1.

  18. Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013;14(4):387–407. https://doi.org/10.1007/s11154-013-9261-9.

    Article  CAS  PubMed  Google Scholar 

  19. Matafome P, Seiça R. The role of brain in energy balance. Adv Neurobiol. 2017;19:33–48. https://doi.org/10.1007/978-3-319-63260-5_2.

    Article  PubMed  Google Scholar 

  20. Taché J. Introduction: Stress as a Cause of Disease. In: Taché J., Selye H., Day S.B. (eds) Cancer, Stress, and Death. Sloan-Kettering Institute Cancer Series. 1978, Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3459-0_1.

  21. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.

    Article  Google Scholar 

  22. Trier AM, Mack MR, Kim BS. The neuroimmune axis in skin sensation, inflammation, and immunity. J Immunol. 2019;202(10):2829–35. https://doi.org/10.4049/jimmunol.1801473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry. 2007;49(2):132–9. https://doi.org/10.4103/0019-5545.33264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morgane PJ, Galler JR, Mokler DJ. A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol. 2005;75(2):143–60. https://doi.org/10.1016/j.pneurobio.2005.01.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Bianca Crivii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crivii, C.B., Clichici, S.V., Filip, A.G. (2021). Anatomy and Topography of the Hypothalamus. In: Uwaifo, G.I. (eds) The Human Hypothalamus. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-62187-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62187-2_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62186-5

  • Online ISBN: 978-3-030-62187-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics