Skip to main content

Normal Findings with Different Radiopharmaceuticals, Techniques, Variants, and Pitfalls

  • Chapter
  • First Online:
Radionuclide Imaging of Infection and Inflammation

Abstract

Many radiopharmaceuticals for imaging inflammation/infection are available. Knowledge of the pharmacokinetics, normal patterns, variants, interactions, and pittfalls of these imaging agents is fundamental for a correct interpretation of imaging in the clinical routine. Standardization of the procedures (patient selection, radiopharmaceutical preparation, acquisition timing, image processing) and adequate quality control of the equipment allow optimal diagnostic imaging and better assessment of the disease. Well-established imaging agents (such as 99mTc-diphosphonate, 111In-oxine-leukocytes, 99mTc-HMPAO-leukocytes, 67Ga-citrate, 99mTc-albumin nanocolloids, [18F]FDG) and novel agents (such as [18F]FDG-labeled leukocytes, 68Ga-citrate, 124I-Fiualuridine) are described and discussed. This chapter also describes indications, diagnostic performance, interpretation, and clinical impact, as well as the possibility of variants and pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hesselewood S, Leung E. Drug interaction with radiopharmaceuticals. Eur J Nucl Med. 1996;21:348–56.

    Article  Google Scholar 

  2. Sampson CB. Drugs and chemicals which affect the purity, biodistribution and pharmacokinetics of radiopharmaceuticals. Aust J Biol Sci. 1990;1:381–400.

    CAS  Google Scholar 

  3. Santos-Oliveira R, Machado M. Pitfalls with radiopharmaceuticals. Am J Med Sci. 2011;342:50–3.

    Article  PubMed  Google Scholar 

  4. Spicer JA, Preston DF, Stephens R. Adverse allergic reaction to technetium-99m methylene disphosphonate. J Nucl Med. 1985;26:373–4.

    CAS  PubMed  Google Scholar 

  5. Schmidt KG, Rasmussen JW, Frederiksen PB, et al. Indium-111-granulocyte scintigraphy in brain abscess diagnosis: limitations and pitfalls. J Nucl Med. 1990;31:1121–7.

    CAS  PubMed  Google Scholar 

  6. Gnanasegaran G, Cook G, Adamson K, et al. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med. 2009;39:380–95.

    Article  PubMed  Google Scholar 

  7. Al-Enizi E, Kazem N, Owunwanne A, et al. Dextrose solutions yield radiopharmaceutical impurities: the “sweet” scans. J Nucl Med Technol. 2003;31:33–6.

    CAS  PubMed  Google Scholar 

  8. Saverymuttu SH, Peters AM, Danpure HJ, et al. Lung transit of 111Indium-labelled granulocytes: relationship to labelling techniques. Scand J Haematol. 1983;30:151–60.

    Article  CAS  PubMed  Google Scholar 

  9. Love C, Tomas MB, Palestro CJ. Pulmonary activity on labelled leukocyte images: patterns of uptake and their significance. Nucl Med Commun. 2002;23:559–63.

    Article  CAS  PubMed  Google Scholar 

  10. Hung JC, Ponto JA, Hammes RJ. Radiopharmaceutical-related pitfalls and artifacts. Semin Nucl Med. 1996;26:208–55.

    Article  CAS  PubMed  Google Scholar 

  11. Roca M, de Vries EF, Jamar F. Guidelines for the labelling of leucocytes with In111-oxine. Eur J Nucl Med Mol Imaging. 2010;37:835–41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Vries EF, Roca M, Jamar F, et al. Guidelines for the labeling of leucocytes with Tc99m-HMPAO. Eur J Nucl Med Mol Imaging. 2010;37:842–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cordova MA, Hladik WB, Rhodes BA. Validation and characterization of adverse reactions to radiopharmaceuticals. Noninv Med Imag. 1984;1:17–24.

    Google Scholar 

  14. Balan KK, Choudhary AK, Balan A, et al. Severe systemic reaction to 99mTc-methylene diphosphonate: a case report. J Nucl Med Technol. 2003;31:76–8.

    PubMed  Google Scholar 

  15. Vidal MV, Gutfilen B, Barbosa-Da-Fonseca LM, et al. Influence of tobacco on the labelling of red blood cells and plasma proteins with technetium-99m. J Exp Clin Cancer Res. 1998;17:41–6.

    CAS  PubMed  Google Scholar 

  16. Laverman P, Bleeker-Rovers CP, Corstens FHM, et al. Development of infection and inflammation targeting compounds. Curr Radiopharm. 2008;1:42–8.

    Article  CAS  Google Scholar 

  17. Wang X, Koch S. Positron emission tomography/computed tomography potential pitfalls and artifacts. Curr Probl Diagn Radiol. 2009;38:156–69.

    Article  PubMed  Google Scholar 

  18. Dogan A, Rezai K. Incidental lymph node visualisation on bone scan due to subcutaneous infiltration of Tc99m MDP. Clin Nucl Med. 1993;18:208–9.

    Article  CAS  PubMed  Google Scholar 

  19. Palestro CJ. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24:128–41.

    Article  CAS  PubMed  Google Scholar 

  20. Schuster DM, Alazraki N. Gallium and other agents in diseases of the lung. Semin Nucl Med. 2002;32:193–211.

    Article  PubMed  Google Scholar 

  21. Love C, Palestro CJ. Altered biodistribution and incidental findings on gallium and labeled leukocyte/bone marrow scans. Semin Nucl Med. 2010;40:271–82.

    Article  PubMed  Google Scholar 

  22. Connolly LP, Connolly SA. Thymic uptake of radiopharmaceuticals. Clin Nucl Med. 2003;28:648–51.

    PubMed  Google Scholar 

  23. Ramsay SC, Yeates MG, Burke WM, et al. Quantitative pulmonary gallium scanning in interstitial lung disease. Eur J Nucl Med. 1992;19:80–5.

    Article  CAS  PubMed  Google Scholar 

  24. Desai AG, Intenzo C, Park C, et al. Drug-induced gallium uptake in the breasts. Clin Nucl Med. 1987;12:703–4.

    Article  CAS  PubMed  Google Scholar 

  25. Vazquez R, Oates E, Sarno RC, et al. Gallium-67 breast uptake in a patient with hypothalamic granuloma (sarcoid). J Nucl Med. 1988;29:118–21.

    CAS  PubMed  Google Scholar 

  26. Society of Nuclear Medicine procedure guideline for gallium scintigraphy in inflammation. Version 3.0, approved 2 June 2004.

    Google Scholar 

  27. Rossleigh MA, Murray IP, Mackey DW, et al. Pediatric solid tumors: evaluation by gallium-67 SPECT studies. J Nucl Med. 1990;31:168–72.

    CAS  PubMed  Google Scholar 

  28. Hattner RS, White DL. Gallium-67/stable gadolinium antagonism: MRI contrast agent markedly alters the normal biodistribution of gallium-67. J Nucl Med. 1985;31:1844–6.

    Google Scholar 

  29. Hoffer P. Gallium and infection. J Nucl Med. 1980;21:484–8.

    CAS  PubMed  Google Scholar 

  30. Hoffer PB, Samuel A, Bushberg JT, et al. Desferoxamine mesylate (desferal): a contrast-enhancing agent for Ga-67 imaging. Radiology. 1979;131:775–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lentle BC, Jackson FI, McGowan DG. Localization of gallium-67 citrate in salivary glands following radiation therapy. J Can Assoc Radiol. 1976;27:89–91.

    CAS  PubMed  Google Scholar 

  32. Yoshida S, Fukumoto M, Motohara T, et al. Ga-67 tumor scan in malignant diffuse mesothelioma—comparison with CT and pathological findings. Ann Nucl Med. 1999;1:49–54.

    Article  Google Scholar 

  33. Fink G, Krelbaum T, Yellin A, et al. Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest. 2001;6:1647–51.

    Article  Google Scholar 

  34. Shiojima K, Tamaki Y, Hashida I, et al. Gallium-67 scintigraphy in evaluation of malignant lymphoma of the thyroid gland. Radiat Med. 1996;14:31–4.

    CAS  PubMed  Google Scholar 

  35. Yamamoto Y, Nishiyama Y, Kawasaki Y, et al. Evaluation of 99mTc-MIBI to predict chemotherapeutic response in patients with small cell lung carcinoma. Nippon Igaku Hoshasen Gakkai Zasshi. 1996;56:980–1.

    CAS  PubMed  Google Scholar 

  36. Lee VW, Fuller JD, O'Brien MJ, et al. Pulmonary Kaposi sarcoma in patients with AIDS: scintigraphic diagnosis with sequential thallium and gallium scanning. Radiology. 1991;180:409–12.

    Article  CAS  PubMed  Google Scholar 

  37. Moinuddin M, Rockett J. Gallium scintigraphy in the detection of amiodarone lung toxicity. AJR Am J Roentgenol. 1986;147:607–9.

    Article  CAS  PubMed  Google Scholar 

  38. van Rooij WJ, van der Meer SC, van Royen EA, et al. Pulmonary gallium-67 uptake in amiodarone pneumonitis. J Nucl Med. 1984;25:211–3.

    PubMed  Google Scholar 

  39. Richman SD, Levenson SM, Bunn PA, et al. 67Ga accumulation in pulmonary lesions associated with bleomycin toxicity. Cancer. 1975;36:1966–72.

    Article  CAS  PubMed  Google Scholar 

  40. Garbes ID, Henderson ES, Gomez GA, et al. Procarbazine-induced interstitial pneumonitis with a normal chest x-ray: a case report. Med Pediatr Oncol. 1986;14:238–41.

    Article  CAS  PubMed  Google Scholar 

  41. MacMahon H, Bekerman C. The diagnostic significance of gallium uptake in patients with normal chest radiographs. Radiology. 1978;127:189–93.

    Article  CAS  PubMed  Google Scholar 

  42. Crook MJ, Kaplan PD, Adatepe MH. Gallium-67 scanning in nitrofurantoin-induced pulmonary reaction. J Nucl Med. 1982;23:690–2.

    CAS  PubMed  Google Scholar 

  43. Stein MG, DeMarco T, Gamsu G, et al. Computed tomography: pathologic correlation in lung disease due to tocainide. Am Rev Respir Dis. 1988;137:458–4.

    Article  CAS  PubMed  Google Scholar 

  44. Manning DM, Strirnlan CV, Turbiner EH. Early detection of busulfan lung: report of a case. Clin Nucl Med. 1980;5:412–4.

    Article  CAS  PubMed  Google Scholar 

  45. Lentle BC, Castor WR, Khaliq A, et al. The effect of contrast lymphangiography on localization of 67Ga-citrate. J Nucl Med. 1975;16:374–6.

    CAS  PubMed  Google Scholar 

  46. Kramer EL, Divgi CR. Pulmonary applications of nuclear medicine. Clin Chest Med. 1991;12:55–75.

    CAS  PubMed  Google Scholar 

  47. Baughman RP, Fernandez M. Radionuclide imaging in interstitial lung disease. Curr Opin Pulm Med. 1996;2:376–9.

    Article  CAS  PubMed  Google Scholar 

  48. Schiff RG, Kabat L, Kamani N. Gallium scanning in lymphoid interstitial pneumonitis of children with AIDS. J Nucl Med. 1987;28:1915–9.

    CAS  PubMed  Google Scholar 

  49. Nimkin K, Oates E. Gallium-67 lung uptake in extrinsic hypersensitivity pneumonitis. Clin Nucl Med. 1989;14:451–2.

    Article  CAS  PubMed  Google Scholar 

  50. Brown DG, Aguirre A, Weaver A. 67Gallium scanning in talc-induced pulmonary granulomatosis. Chest. 1980;77:561–5.

    Article  CAS  PubMed  Google Scholar 

  51. Hayes AA, Thickbroom GW, Guelfi GR, et al. Computer quantitation of gallium 67 lung uptake in crocidolite (blue asbestos) workers of Western Australia. Eur J Nucl Med. 1990;16:855–8.

    Article  CAS  PubMed  Google Scholar 

  52. Deseran MW, Colletti PM, Ratto D, et al. Chronic berylliosis. Demonstration by gallium-67 imaging and magnetic resonance imaging. Clin Nucl Med. 1988;13:509–11.

    Article  CAS  PubMed  Google Scholar 

  53. Kanner RE, Barkman HW, Rom WN, et al. Gallium-67 citrate imaging in underground coal miners. Am J Ind Med. 1985;8:49–55.

    Article  CAS  PubMed  Google Scholar 

  54. Siemsen JK, Grebe SF, Waxman AD. The use of gallium-67 in pulmonary disorders. Semin Nucl Med. 1978;8:235–49.

    Article  CAS  PubMed  Google Scholar 

  55. Lin RY. Severe spirometric defects in systemic lupus erythematosus. A possible role for bronchoalveolar lavage and gallium scanning. Clin Rheumatol. 1987;6:276–81.

    Article  CAS  PubMed  Google Scholar 

  56. Baron M, Feiglin D, Hyland R, et al. 67Gallium scans in progressive systemic sclerosis. Arthritis Rheum. 1983;26:969–74.

    Article  CAS  PubMed  Google Scholar 

  57. Yeh SD, White DA, Stuver-Pepe DE, et al. Abnormal gallium scintigraphy in pulmonary alveolar proteinosis (PAP). Clin Nucl Med. 1987;12:294–7.

    Article  CAS  PubMed  Google Scholar 

  58. Morals J, Carrier L, Gariepy G, et al. Gallium-67 pulmonary uptake in eosinophilic pneumonia. Clin Nucl Med. 1988;13:41–3.

    Article  Google Scholar 

  59. Widman D, Swayne LC, Rozan S. Multicentric reticulo-histiocytosis: assessment of pulmonary disease by gallium-67 scintigraphy. J Rheumatol. 1988;15:132–5.

    CAS  PubMed  Google Scholar 

  60. Alpert LI. Pulmonary uptake of gallium-67 in Wegener’s granulomatosis. Clin Nucl Med. 1980;5:53–4.

    Article  CAS  PubMed  Google Scholar 

  61. Javaheri S, Levine BW, McKusick KA. Serial 67Ga lung scanning in pulmonary eosinopbilic granuloma. Thorax. 1979;34:822–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gnanasegaran G, Cook GJ, Fogelman I. Musculoskeletal system. In: Biersack HJ, Freeman LM, editors. Nuclear medicine concise. New York: Springer; 2007.

    Google Scholar 

  63. O’Connor MK, Brown ML, Hung JC, et al. The art of bone scintigraphy: technical aspects. J Nucl Med. 1991;32:2332–41.

    PubMed  Google Scholar 

  64. Storey G, Murray IPC. Bone scintigraphy: the procedure and interpretation. In: Ell PJ, Gambhir SS Nuclear medicine in clinical diagnosis and treatment, Vol I. Churchill Livingstone, Elsevier, New York, 2004:593–622.

    Google Scholar 

  65. Cook GJ, Fogelman I. The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med. 2001;31:206–11.

    Article  CAS  PubMed  Google Scholar 

  66. Cook GJ, Fogelman I. Skeletal metastases from breast cancer: imaging with nuclear medicine. Semin Nucl Med. 1999;29:69–79.

    Article  CAS  PubMed  Google Scholar 

  67. O’Sullivan JM, Cook GJ. A review of the efficacy of bone scanning in prostate and breast cancer. Q J Nucl Med. 2002;46:152–9.

    PubMed  Google Scholar 

  68. Love C, Din AS, Tomas MB, et al. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23:341–58.

    Article  PubMed  Google Scholar 

  69. Fogelman I, McKillop JH, Gray HW. The “hot patella” sign: is it of any clinical significance? Concise communication. J Nucl Med. 1983;24:312–5.

    CAS  PubMed  Google Scholar 

  70. Kipper MS, Alazraki NP, Feiglin DH. The “hot” patella. Clin Nucl Med. 1982;7:28–32.

    Article  CAS  PubMed  Google Scholar 

  71. Love C, Tronco GG, Palestro CJ. Imaging of infection and inflammation with 99mTc-Fanolesomab. Q J Nucl Med Mol Imaging. 2006;50:113–20.

    CAS  PubMed  Google Scholar 

  72. Chu JY, Ho JE, Monteleone PL, O'Connor DM. Technetium colloid bone marrow imaging in Fanconi’s anemia. Pediatrics. 1979;64:635–9.

    CAS  PubMed  Google Scholar 

  73. Milner PF, Brown M. Bone marrow infarction in sickle cell anemia: correlation with hematologic profiles. Blood. 1982;60:1411–9.

    Article  CAS  PubMed  Google Scholar 

  74. Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Technol. 2004;32:47–57.

    PubMed  Google Scholar 

  75. Gratz S, Braun HG, Behr TM, et al. Photopenia in chronic vertebral osteomyelitis with technetium-99m-antigranulocyte antibody (BW 250/183). J Nucl Med. 1997;38:211–6.

    CAS  PubMed  Google Scholar 

  76. Becker W, Dölkemeyer U, Gramatzki M, et al. Use of immunoscintigraphy in the diagnosis of FUO. Eur J Nucl Med. 1993;20:1078–83.

    Article  CAS  PubMed  Google Scholar 

  77. Shanthly N, Aruva MR, Zhang K, et al. 99mTc-Falonesomab: affinity, pharmacokinetics and preliminary evaluation. Q J Nucl Med Mol Imaging. 2006;50:104–12.

    CAS  PubMed  Google Scholar 

  78. Thakur ML, Marcus CS, Henneman P, et al. Imaging inflammatory disease with neutrophil-specific technetium-99m-labeled monoclonal antibody anti-SSEA-1. J Nucl Med. 1996;37:1789–95.

    CAS  PubMed  Google Scholar 

  79. Mozley PD, Thakur ML, Alavi A, et al. Effects of a 99mTc-labeled murine immunoglobulin M antibody to CD15 antigens on human granulocyte membranes in healthy volunteers. J Nucl Med. 1999;40:2107–14.

    CAS  PubMed  Google Scholar 

  80. Kumar V. Radiolabeled white blood cells and direct targeting of micro-organisms for infection imaging. Q J Nucl Med Mol Imaging. 2005;49:325–38.

    CAS  PubMed  Google Scholar 

  81. Becker W, Repp R, Hansen HJ, et al. Binding characteristics and kinetics of a new Tc-99m-antigranulocyte Fab fragment (Leukoscan™). J Nucl Med. 1995;36:208P.

    Google Scholar 

  82. Quigley AM, Gnanasegaran G, Buscombe JR. Technetium-99m-labelled sulesomab (LeukoScan) in the evaluation of soft tissue infections. Med Princ Pract. 2008;17:447–52.

    Article  PubMed  Google Scholar 

  83. Gratz S, Schipper ML, Dorner J, et al. LeukoScan for imaging infection in different clinical settings: a retrospective evaluation and extended review of the literature. Clin Nucl Med. 2003;28:267–76.

    CAS  PubMed  Google Scholar 

  84. Becker W. The contribution of nuclear medicine to the patient with infection. Eur J Nucl Med. 1995;22:1195–211.

    Article  CAS  PubMed  Google Scholar 

  85. Love C, Opoku-Agyemang P, Tomas MB, et al. Pulmonary activity on labeled leukocyte images: physiologic, pathologic, and imaging correlation. Radiographics. 2002;22:1385–93.

    Article  PubMed  Google Scholar 

  86. Coleman RE, Welch D. Possible pitfalls with clinical imaging of indium-111 leukocytes: concise communication. J Nucl Med. 1980;21:122–5.

    CAS  PubMed  Google Scholar 

  87. Oates E, Staudinger K, Gilbertson V. Significance of nodal uptake on indium 111 labeled leukocyte scans. Clin Nucl Med. 1989;14:282–5.

    Article  CAS  PubMed  Google Scholar 

  88. Williamson SL, Williamson MR, Seibert JJ, et al. Indium-111 leukocyte accumulation in submandibular gland saliva as a cause for false-positive gut uptake in children. Clin Nucl Med. 1987;12:867–8.

    Article  CAS  PubMed  Google Scholar 

  89. Palestro CJ, Finn C. Indium-111 leukocyte imaging in Gaucher’s disease. J Nucl Med. 1993;34:818–20.

    CAS  PubMed  Google Scholar 

  90. Cook PS, Datz FL, Disbro MA. Pulmonary uptake in indium-111 leukocyte imaging: clinical significance in patients with suspected occult infections. Radiology. 1984;150:557–61.

    Article  CAS  PubMed  Google Scholar 

  91. Palestro CJ, Love C, Bhargava KK. Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging. 2009;53:105–23.

    CAS  PubMed  Google Scholar 

  92. Propst-Proctor SL, Dillingham MF, McDougall IR, et al. The white blood cell scan in orthopedics. Clin Orthop. 1982;168:157–65.

    Google Scholar 

  93. Miron S, Minotti A, Crass J. Accumulation of In-111 tagged white blood cells in heterotopic new bone. Clin Nucl Med. 1992;17:972–3.

    Article  CAS  PubMed  Google Scholar 

  94. Kim EE, Pjura GA, Lowry PA, et al. Osteomyelitis complicating fracture: pitfalls of 111In leukocyte scintigraphy. AJR Am J Roentgenol. 1987;148:927–30.

    Article  CAS  PubMed  Google Scholar 

  95. Sfakianakis GN, Mnaymneh W, Ghandur-Mnaymneh L. Positive indium-111 leukocytes scintigraphy in a skeletal metastasis. AJR Am J Roentgenol. 1982;139:601–3.

    Article  CAS  PubMed  Google Scholar 

  96. Bellotti C, Aragno MG, Medina M, et al. Differential diagnosis of CT-hypodense cranial lesions with indium-111-oxine-labeled leukocytes. J Neurosurg. 1986;64:750–3.

    Article  CAS  PubMed  Google Scholar 

  97. Mok YP, Carney WH, Fernandez-Ulloa M. Skeletal photopenic lesions in In-111 WBC imaging. J Nucl Med. 1984;25:1322–6.

    CAS  PubMed  Google Scholar 

  98. Palestro CJ, Love C, Tronco GG, et al. Combined labeled leukocyte and technetium-99m sulfur colloid marrow imaging for diagnosing musculoskeletal infection: principles, technique, interpretation, indications and limitations. Radiographics. 2006;26:859–70.

    Article  PubMed  Google Scholar 

  99. Palestro CJ, Kim CK, Swyer AJ, et al. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med. 1991;32:1861–5.

    CAS  PubMed  Google Scholar 

  100. Palestro CJ, Kim CK, Vega A, et al. Acute effect of radiation therapy on indium-111 labeled leukocyte uptake in bone marrow. J Nucl Med. 1989;30:1889–91.

    CAS  PubMed  Google Scholar 

  101. Palestro CJ, Love C, Tronco GG, et al. Role of radionuclide imaging in the diagnosis of postoperative infection. Radiographics. 2000;20:1649–60.

    Article  CAS  PubMed  Google Scholar 

  102. Society of Nuclear Medicine procedure guideline for 99mTc-exametazime (HMPAO)-labeled leukocyte scintigraphy for suspected infection/inflammation. Version 3.0, approved 2 June 2004.

    Google Scholar 

  103. McAfee JG, Samin A. In-111 labeled leukocytes: a review of problems in image interpretation. Radiology. 1985;155:221–9.

    Article  CAS  PubMed  Google Scholar 

  104. Palestro CJ, Padilla ML, Swyer AJ, et al. Diffuse pulmonary uptake of indium-111-labeled leukocytes in drug-induced pneumonitis. J Nucl Med. 1992;33:1175–7.

    CAS  PubMed  Google Scholar 

  105. Marinelli WA, Walker Smith GJ, Ingbar DH. Inflammation and repair of the lung. In: Bone RC, editor. Pulmonary and critical care medicine. St Louis, Mo: Mosby; 1998. p. 1–6.

    Google Scholar 

  106. Girndt M, Kaul H, Leitnaker CK, et al. Selective sequestration of cytokine-producing monocytes during hemodialysis treatment. Am J Kidney Dis. 2001;37:954–63.

    Article  CAS  PubMed  Google Scholar 

  107. Palestro CJ, Goldsmith SJ. The role of gallium and labeled leukocyte scintigraphy in the AIDS patient. Q J Nucl Med. 1995;39:221–30.

    CAS  PubMed  Google Scholar 

  108. Palestro CJ, Love C. Radionuclide imaging of musculoskeletal infection: conventional agents. Semin Musculoskelet Radiol. 2007;11:335–52.

    Article  PubMed  Google Scholar 

  109. Sonmezoglu K, Sonmezoglu M, Halac M. Usefulness of 99mTc-ciprofloxacin (infection) scan in diagnosis of chronic orthopedic infections: comparative study with 99mTc-HMPAO leukocyte scintigraphy. J Nucl Med. 2001;42:567–74.

    CAS  PubMed  Google Scholar 

  110. Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29:1467–86.

    Article  PubMed  Google Scholar 

  111. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77.

    Article  CAS  PubMed  Google Scholar 

  112. Strauss GJ. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med. 1996;23:1409–15.

    Article  CAS  PubMed  Google Scholar 

  113. Abouzied MM, Crawford ES, Nabi HA. 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol. 2005;33:145–55.

    PubMed  Google Scholar 

  114. Himms-Hagen J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 1990;4:2890–8.

    Article  CAS  PubMed  Google Scholar 

  115. Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med. 2004;34:122–33.

    Article  PubMed  Google Scholar 

  116. Maurer AH, Burshteyn M, Adler LP, et al. How to differentiate benign versus malignant cardiac and paracardiac 18F-FDG uptake at oncologic PET/CT. Radiographics. 2011;31:1287–305.

    Article  PubMed  Google Scholar 

  117. Patel PM, Alibazoglu H, Ali A, et al. Normal thymic uptake of FDG on PET imaging. Clin Nucl Med. 1996;21:772–5.

    Article  CAS  PubMed  Google Scholar 

  118. Hicks RJ, Binns D, Stabin MG. Pattern of uptake and excretion of 18F-FDG in the lactating breast. J Nucl Med. 2001;42:1238–42.

    CAS  PubMed  Google Scholar 

  119. Kitajima K, NakamotoY SM. Normal uptake of 18F-FDG in the testis: an assessment by PET/CT. Ann Nucl Med. 2007;21:405–10.

    Article  PubMed  Google Scholar 

  120. Liu Y, Ghesani NV, Zuckier LS. Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin Nucl Med. 2010;40:294–315.

    Article  PubMed  Google Scholar 

  121. Vilain D, Bochet J, Le Stanc E. Unsuspected hibernating myocardium detected by routine oncology 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2010;37:409.

    Article  PubMed  Google Scholar 

  122. Zanco P, Desideri A, Mobilia G, et al. Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med. 2000;41:973–7.

    CAS  PubMed  Google Scholar 

  123. Zazulia AR, Videen TO, Powers WJ. Transient focal increase in perihematomal glucose metabolism after acute human intracerebral hemorrhage. Stroke. 2009;40:1638–43.

    Article  CAS  PubMed  Google Scholar 

  124. Akman CI, Ichise M, Olsavsky A, et al. Epilepsy duration impacts on brain glucose metabolism in temporal lobe epilepsy: results of voxel-based mapping. Epilepsy Behav. 2010;17:373–80.

    Article  PubMed  Google Scholar 

  125. Novak L, Emri M, Molnar P. Regional cerebral 18FDG uptake during subarachnoid hemorrhage induced vasospasm. Neurol Res. 2006;28:864–70.

    Article  PubMed  Google Scholar 

  126. Weng JH, Lee JK, Wu MF, et al. Pituitary FDG uptake in a patient of lung cancer with bilateral adrenal metastases causing adrenal cortical insufficiency. Clin Nucl Med. 2011;36:731–2.

    Article  PubMed  Google Scholar 

  127. Poduri A, Golja A, Takeoka M, et al. Focal cortical malformations can show asymmetrically higher uptake on interictal fluorine-18 fluorodeoxyglucose positron emission tomography (PET). J Child Neurol. 2007;22:232–7.

    Article  PubMed  Google Scholar 

  128. Kostakoglu L, Hardoff R, Mirtcheva R, et al. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics. 2004;24:1411–31.

    Article  PubMed  Google Scholar 

  129. Poole DC, Kindig CA, Behnke BJ. Effects of emphysema on diaphragm microvascular oxygen pressure. Am J Respir Crit Care Med. 2001;163:1081–6.

    Article  CAS  PubMed  Google Scholar 

  130. Alavi A, Gupta N, Alberini JL, et al. Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med. 2002;32:293–321.

    Article  PubMed  Google Scholar 

  131. Goerres GW, Ziegler SI, Burger C. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology. 2003;226:577–84.

    Article  PubMed  Google Scholar 

  132. Bujenovic S, Mannting F, Chakrabarti R, et al. Artifactual 2-deoxy-2-18F-fluoro-D-glucose localization surrounding metallic objects in a PET/CT scanner using CT-based attenuation correction. Mol Imaging Biol. 2003;5:20–2.

    Article  PubMed  Google Scholar 

  133. Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography—clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med. 2003;33:228–37.

    Article  PubMed  Google Scholar 

  134. Wahl RL. Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med. 2004;45:82S–95S.

    PubMed  Google Scholar 

  135. Kawano T, Suzuki A, Ishida A, et al. The clinical relevance of thymic fluorodeoxyglucose uptake in pediatric patients after chemotherapy. Eur J Nucl Med Mol Imaging. 2004;31:831–6.

    Article  CAS  PubMed  Google Scholar 

  136. Nakahara T, Fujii H, Ide M, et al. FDG uptake in the morphologically normal thymus: comparison of FDG positron emission tomography and CT. Br J Radiol. 2001;74:821–4.

    Article  CAS  PubMed  Google Scholar 

  137. Alibazoglu H, Alibazoglu B, Hollinger E, et al. Normal thymic uptake of 2-deoxy-2[F-18]fluoro-D-glucose. Clin Nucl Med. 1999;24:597–600.

    Article  CAS  PubMed  Google Scholar 

  138. Brink I, Reinhardt MJ, Hoegerle S, et al. Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42:591–5.

    CAS  PubMed  Google Scholar 

  139. Burrell SC, Van den Abbeele AD. 2-Deoxy-2-[F-18] fluoro-D-glucose-positron emission tomography of the head and neck: an atlas of normal uptake and variants. Mol Imaging Biol. 2005;7:244–56.

    Article  PubMed  Google Scholar 

  140. Grab D, Flock F, Stöhr I, et al. Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol Oncol. 2000;77:454–9.

    Article  CAS  PubMed  Google Scholar 

  141. Nakayama Y, Makino S, Fukuda Y, et al. Activation of lavage lymphocytes in lung injuries caused by radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys. 1996;32:459–67.

    Article  Google Scholar 

  142. De Winter F, Van de Wiele C, Vogelaers D. Fluorine-18 fluorodeoxyglucose positron emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am. 2001;83:651–60.

    Article  PubMed  Google Scholar 

  143. Gorospe L, Raman S, Echeveste J, et al. Whole-body PET/CT: spectrum of physiological variants, artifacts and interpretative pitfalls in cancer patients. Nucl Med Commun. 2005;26:671–87.

    Article  PubMed  Google Scholar 

  144. Liu Y. Orthopedic surgery-related benign uptake on FDG-PET: case examples and pitfalls. Ann Nucl Med. 2009;23:701–8.

    Article  PubMed  Google Scholar 

  145. Zhuang H, Chacko TK, Hickeson M, et al. Persistent non-specific FDG uptake on PET imaging following hip arthroplasty. Eur J Nucl Med. 2002;29:1328–33.

    Article  CAS  Google Scholar 

  146. Chacko TK, Zhuang H, Stevenson K, et al. The importance of the location of fluorodeoxyglucose uptake in periprosthetic infection in painful hip prostheses. Nucl Med Commun. 2002;23:851–5.

    Article  CAS  PubMed  Google Scholar 

  147. Nguyen BD, Ram PC, Roarke MC. Hip anthroplasty with mass-like pelvic granulomatous disease: PET imaging. Clin Nucl Med. 2006;31:30–2.

    Article  PubMed  Google Scholar 

  148. Lim JW, Tang CL, Keng GH. False positive F-18 fluorodeoxyglucose combined PET/CT scans from suture granuloma and chronic inflammation: report of two cases and review of literature. Ann Acad Med Singap. 2005;34:457–62.

    CAS  PubMed  Google Scholar 

  149. Shon IH, O’Doherty MJ, Maisey MN. Positron emission tomography in lung cancer. Semin Nucl Med. 2002;32:240–71.

    Article  PubMed  Google Scholar 

  150. Henry G, Garner WL. Inflammatory mediators in wound healing. Surg Clin North Am. 2003;83:483–507.

    Article  PubMed  Google Scholar 

  151. Kazama T, Swanston N, Podoloff DA, et al. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging. 2005;32:1406–11.

    Article  CAS  PubMed  Google Scholar 

  152. Sugawara Y, Zasadny KR, Kison PV, et al. Splenic fluorodeoxyglucose uptake increased by granulocyte colony-stimulating factor therapy: PET imaging results. J Nucl Med. 1999;40:1456–62.

    CAS  PubMed  Google Scholar 

  153. Kim EE, Chung SK, Haynie TP, et al. Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics. 1992;12:269–79.

    Article  CAS  PubMed  Google Scholar 

  154. Esmailiejah AA, Abbasian M, Azarsina S, et al. Diagnostic efficacy of UBI scan in musculoskeletal infections. Arch Iran Med. 2015;18:371–5.

    PubMed  Google Scholar 

  155. Meléndez-Alafort L, Rodrìguez-Cortés J, Ferro-Flores G, et al. Biokinetics of 99mTc-UBI in humans. Nucl Med Biol. 2004;31:373–9.

    Article  PubMed  CAS  Google Scholar 

  156. Jehangir M, Bashar M, Pervez S. Development of kits for 99mTc radiopharmaceuticals for infection imaging. Vienna: IAEA/IAEA-TECDOC-1414; 2004. p. 65–77.

    Google Scholar 

  157. Mikolajczak R, Korsak A, Gorska B, et al. Development of kits for 99mTc radiopharmaceuticals for infection imaging. Vienna: IAEA/IAEA-TECDOC-1414; 2004. p. 79–86.

    Google Scholar 

  158. Sepúlveda-Méndez J, de Murphy CA, Rojas-Bautista JC, et al. Specificity of 99mTc-UBI for detecting infection foci in patients with fever in study. Nucl Med Commun. 2010;31:889–95.

    Article  PubMed  Google Scholar 

  159. Saeed S, Zafar J, Khan B, et al. Utility of 99mTc-labelled antimicrobial peptide ubiquicidin (29-41) in the diagnosis of diabetic foot infection. Eur J Nucl Med Mol Imaging. 2013;40:737–43.

    Article  CAS  PubMed  Google Scholar 

  160. Sathekge M, Garcia-Perez O, Paez D, et al. Molecular imaging in musculoskeletal infections with 99mTc-UBI 29-41 SPECT/CT. Ann Nucl Med. 2018;32:54–9.

    Article  CAS  PubMed  Google Scholar 

  161. Auletta S, Galli F, Lauri C, et al. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin Transl Imaging. 2016;4:229–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Meyer M, Testart N, Jreige M, et al. Diagnostic performance of PET or PET/CT using 18F-FDG labeled white blood cells in infectious disease: a systematic review and a bivariate meta-analysis. Diagnostics. 2019;10(1). pii: E2. https://doi.org/10.3390/diagnostics10010002.

  163. Zhang XM, Zhang H, McLeroth P, Berkowitz RD, et al. [124I]FIAU: human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl Med Biol. 2016;43:273–9.

    Article  CAS  PubMed  Google Scholar 

  164. Nanni C, Errani C, Boriani L, et al. 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med. 2016;51:1932–6.

    Article  Google Scholar 

  165. Tseng JR, Chang YH, Wu CT, et al. Potential usefulness of 68Ga-citrate PET/CT in detecting infected lower limb prostheses. EJNMMI Res. 2019;9(1):2. https://doi.org/10.1186/s13550-018-0468-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All editors have contributed to the preparation of this chapter. We are particularly grateful to Dr. Elena Lazzeri (Pisa, Italy), Dr. Napoleone Prandini (Modena, Italy), and Martina Sollini (formerly in Pisa, and currently in Milan, Italy) for providing images that have been included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annibale Versari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Versari, A., Casali, M. (2021). Normal Findings with Different Radiopharmaceuticals, Techniques, Variants, and Pitfalls. In: Lazzeri, E., et al. Radionuclide Imaging of Infection and Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-62175-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62175-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62174-2

  • Online ISBN: 978-3-030-62175-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics