Skip to main content

Abstract

Clinical metagenomics (CMg), based on whole-genome sequencing of clinical samples, offers the potential to directly detect all microorganisms present in a sample. This approach could, therefore, provide potential unbiased detection of all microorganisms present in the sample, including those organisms that are fastidious or even cannot be cultivated. It constitutes a rapid and generic approach providing all medically-actionable information: the presence or the absence of microorganisms (detection), their identification to the species level or even beyond (speciation), the detection of antimicrobial resistance determinants, with the potential to guide antibiotic therapy and virulence-associated genes.

This chapter aims at describing current common hurdles encountered when attempting to utilise CMg to clinical samples (such as sample preparation and wet lab issues and bioinformatic challenges) and discuss ways to overcome them. We will also review the current experience with using CMg in clinical samples from different anatomical sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westblade LF, van Belkum A, Grundhoff A, Weinstock GM, Pamer EG, Pallen MJ et al (2016) Role of clinicogenomics in infectious disease diagnostics and public health microbiology. J Clin Microbiol 54(7):1686–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rossen JWA, Friedrich AW, Moran-Gilad J (2018) Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect 24(4):355–360

    Article  CAS  PubMed  Google Scholar 

  3. Greninger AL (2018) The challenge of diagnostic metagenomics. Expert Rev Mol Diagn 18(7):605–615

    Article  CAS  PubMed  Google Scholar 

  4. Forbes JD, Knox NC, Peterson CL, Reimer AR (2018) Highlighting clinical metagenomics for enhanced diagnostic decision-making: a step towards wider implementation. Comput Struct Biotechnol J 16:108–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruppe E, Greub G, Schrenzel J (2017) Messages from the first international conference on clinical metagenomics (ICCMg). Microbes Infect 19(4–5):223–228

    Article  PubMed  Google Scholar 

  6. Ruppe E, Schrenzel J (2018) Messages from the second international conference on clinical metagenomics (ICCMg2). Microbes Infect 20(4):222–227

    Article  PubMed  Google Scholar 

  7. Ruppe E, Schrenzel J (2019) Messages from the third international conference on clinical metagenomics (ICCMg3). Microbes Infect 21(7):273–277

    Article  PubMed  Google Scholar 

  8. Charretier Y, Lazarevic V, Schrenzel J, Ruppé E (2020) Messages from the Fourth International Conference on Clinical Metagenomics. Microbes Infect 22:635–641. https://doi.org/10.1016/j.micinf.2020.07.007

  9. Lorenz M, inventor; Molzym Gmbh & Co. Kg, assignee (2007) Use of nucleases for degrading nucleic acids in the presence of chaotropic agents and/or surfactants patent EP1861495 (A1) Abstract of corresponding document: DE102005009479 (A1). 2007-12-05

    Google Scholar 

  10. Leo S, Gaia N, Ruppe E, Emonet S, Girard M, Lazarevic V et al (2017) Detection of bacterial pathogens from broncho-alveolar lavage by next-generation sequencing. Int J Mol Sci 18(9)

    Google Scholar 

  11. Lazarevic V, Gaia N, Girard M, Leo S, Cherkaoui A, Renzi G et al (2018) When bacterial culture fails, metagenomics can help: a case of chronic hepatic brucelloma assessed by next-generation sequencing. Frontiers Microbiol 9:1566

    Article  Google Scholar 

  12. QIAamp DNA Microbiome Handbook - QIAGEN

    Google Scholar 

  13. Hohnadel M, Jouette S, inventors; Merck Patent GmbH, assignee. Method for isolating microorganisms from a complex sample patent US20160257987A1. 2016 2016-09-08

    Google Scholar 

  14. Hasan MR, Rawat A, Tang P, Jithesh PV, Thomas E, Tan R et al (2016) Depletion of human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-generation sequencing. J Clin Microbiol 54(4):919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K (2018) Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 6(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sanchez-Romero MA, Cota I, Casadesus J (2015) DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 25:9–16

    Article  CAS  PubMed  Google Scholar 

  17. Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD et al (2016) Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods 127:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Street TL, Sanderson ND, Atkins BL, Brent AJ, Cole K, Foster D et al (2017) Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing. J Clin Microbiol 55(8):2334–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu W, Crawford ED, O’Donovan BD, Wilson MR, Chow ED, Retallack H et al (2016) Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol 17:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sooknanan RR, inventor; Epicentre Technologies Corporation, assignee (2018) Methods, compositions, and kits for generating rRNA-depleted samples or isolating rRNA from samples patent US2018044660 (A1). 2018-02-15

    Google Scholar 

  21. Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, Levin JZ et al (2012) Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13(3):R23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Avraham R, Haseley N, Fan A, Bloom-Ackermann Z, Livny J, Hung DT (2016) A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes. Nat Protoc 11(8):1477–1491

    Article  PubMed  Google Scholar 

  23. Conrad RC, inventor; Ambion, Inc, assignee (2004) High efficiency mrna isolation methods and compositions patent US2004230048 (A1). 2004-11-18

    Google Scholar 

  24. Mendoza L, Moturi S, Setterquist R, Whitley J, inventors; Ambion, Inc; Mendoza, Leopoldo, G; Moturi, Sharmili; Setterquist, Robert; Whitley, John, Penn, assignee (2006) Methods and compositions for depleting abundant RNA transcripts patent WO2006110314 (A2). 2006-10-19

    Google Scholar 

  25. Marynowska M, Goux X, Sillam-Dusses D, Rouland-Lefevre C, Roisin Y, Delfosse P et al (2017) Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics 18(1):681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99(8):5261–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hammond M, Homa F, Andersson-Svahn H, Ettema TJ, Joensson HN (2016) Picodroplet partitioned whole genome amplification of low biomass samples preserves genomic diversity for metagenomic analysis. Microbiome 4(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  28. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Blainey PC, Quake SR (2011) Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res 39(4):e19

    Article  PubMed  CAS  Google Scholar 

  30. Thoendel M, Jeraldo P, Greenwood-Quaintance KE, Yao J, Chia N, Hanssen AD et al (2017) Impact of contaminating DNA in whole-genome amplification kits used for metagenomic shotgun sequencing for infection diagnosis. J Clin Microbiol 55(6):1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS et al (2018) Recognizing the reagent microbiome. Nat Microbiol 3(8):851–853

    Article  PubMed  CAS  Google Scholar 

  32. Hansen S, Faye O, Sanabani SS, Faye M, Bohlken-Fascher S, Faye O et al (2018) Combination random isothermal amplification and nanopore sequencing for rapid identification of the causative agent of an outbreak. J Clin Virol 106:23–27

    Article  CAS  PubMed  Google Scholar 

  33. Grumaz S, Stevens P, Grumaz C, Decker SO, Weigand MA, Hofer S et al (2016) Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med 8(1):73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Grumaz S, Grumaz C, Vainshtein Y, Stevens P, Glanz K, Decker SO et al (2019) Enhanced performance of next-generation sequencing diagnostics compared with standard of care microbiological diagnostics in patients suffering from septic shock. Crit Care Med 47(5):e394–e402

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID et al (2019) Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol 4(4):663–674

    Article  CAS  PubMed  Google Scholar 

  36. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27(2):182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bent ZW, Tran-Gyamfi MB, Langevin SA, Brazel DM, Hamblin RY, Branda SS et al (2013) Enriching pathogen transcripts from infected samples: a capture-based approach to enhanced host-pathogen RNA sequencing. Anal Biochem 438(1):90–96

    Article  CAS  PubMed  Google Scholar 

  38. Briese T, Kapoor A, Mishra N, Jain K, Kumar A, Jabado OJ et al (2015) Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio 6(5):e01491–e01415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wylie TN, Wylie KM, Herter BN, Storch GA (2015) Enhanced virome sequencing using targeted sequence capture. Genome Res 25(12):1910–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noyes NR, Weinroth ME, Parker JK, Dean CJ, Lakin SM, Raymond RA et al (2017) Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing. Microbiome 5(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S et al (2011) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9(1):72–74

    Article  PubMed  CAS  Google Scholar 

  42. Pflug FG, von Haeseler A (2018) TRUmiCount: correctly counting absolute numbers of molecules using unique molecular identifiers. Bioinformatics (Oxford, England)

    Google Scholar 

  43. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    Article  CAS  PubMed  Google Scholar 

  44. Loose M, Malla S, Stout M (2016) Real-time selective sequencing using nanopore technology. Nat Methods 13(9):751–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E et al (2014) A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 24(7):1180–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):R46

    Article  PubMed  PubMed Central  Google Scholar 

  47. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E et al (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903

    Article  CAS  PubMed  Google Scholar 

  48. Xavier BB, Das AJ, Cochrane G, De Ganck S, Kumar-Singh S, Aarestrup FM et al (2016) Consolidating and exploring antibiotic resistance gene data resources. J Clin Microbiol 54(4):851–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67(11):2640–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57(7):3348–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13(2):116–123

    Article  CAS  PubMed  Google Scholar 

  52. Wallace JC, Port JA, Smith MN, Faustman EM (2017) FARME DB: a functional antibiotic resistance element database. Database 2017

    Google Scholar 

  53. Hunt M, Mather AE, Sanchez-Buso L, Page AJ, Parkhill J, Keane JA et al (2017) ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microbial Genom 3(10):e000131

    Google Scholar 

  54. Ruppé E, Lazarevic V, Girard M, Mouton W, Ferry T, Laurent F et al (2017) Clinical metagenomics of bone and joint infections: a proof of concept study. Sci Rep 7:7718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Thoendel M, Jeraldo P, Greenwood-Quaintance KE, Yao J, Chia N, Hanssen AD et al (2018) Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach. Clin Infect Dis

    Google Scholar 

  56. Wylie KM, Blanco-Guzman M, Wylie TN, Lawrence SJ, Ghobadi A, DiPersio JF et al (2016) High-throughput sequencing of cerebrospinal fluid for diagnosis of chronic Propionibacterium acnes meningitis in an allogeneic stem cell transplant recipient. Transpl Infect Dis 18(2):227–233

    Article  CAS  PubMed  Google Scholar 

  57. Wilson MR, O’Donovan BD, Gelfand JM, Sample HA, Chow FC, Betjemann JP et al (2018) Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol

    Google Scholar 

  58. Burton JN, Liachko I, Dunham MJ, Shendure J (2014) Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda, MD) 4(7):1339–1346

    Article  Google Scholar 

  59. Grammatico-Guillon L, Baron S, Gettner S, Lecuyer AI, Gaborit C, Rosset P et al (2012) Bone and joint infections in hospitalized patients in France, 2008: clinical and economic outcomes. J Hosp Infect 82(1):40–48

    Article  CAS  PubMed  Google Scholar 

  60. Ivy MI, Thoendel MJ, Jeraldo PR, Greenwood-Quaintance KE, Hanssen AD, Abdel MP et al (2018) Direct detection and identification of prosthetic joint infection pathogens in synovial fluid by metagenomic shotgun sequencing. J Clin Microbiol

    Google Scholar 

  61. Gyarmati P, Kjellander C, Aust C, Song Y, Ohrmalm L, Giske CG (2016) Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia. Sci Rep 6:23532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Parize P, Muth E, Richaud C, Gratigny M, Pilmis B, Lamamy A et al (2017) Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study. Clin Microbiol Infect 23(8):574.e1–574.e6

    Article  CAS  Google Scholar 

  63. Pendleton KM, Erb-Downward JR, Bao Y, Branton WR, Falkowski NR, Newton DW et al (2017) Rapid pathogen identification in bacterial pneumonia using real-time metagenomics. Am J Respir Crit Care Med 196(12):1610–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schlaberg R, Queen K, Simmon K, Tardif K, Stockmann C, Flygare S et al (2017) Viral pathogen detection by metagenomics and pan-viral group polymerase chain reaction in children with pneumonia lacking identifiable etiology. J Infect Dis 215(9):1407–1415

    Article  CAS  PubMed  Google Scholar 

  65. Langelier C, Zinter MS, Kalantar K, Yanik GA, Christenson S, O’Donovan B et al (2018) Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. Am J Respir Crit Care Med 197(4):524–528

    Article  PubMed  PubMed Central  Google Scholar 

  66. Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C et al (2019) Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37(7):783–792

    Article  CAS  PubMed  Google Scholar 

  67. Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G et al (2014) Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med 370(25):2408–2417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Simner PJ, Miller HB, Breitweiser FP, Pinilla Monsalve G, Pardo CA, Salzberg SL et al (2018) Development and optimization of metagenomic next-generation sequencing methods for cerebral spinal fluid diagnostics. J Clin Microbiol

    Google Scholar 

  69. Perlejewski K, Bukowska-Osko I, Nakamura S, Motooka D, Stokowy T, Ploski R et al (2016) Metagenomic analysis of cerebrospinal fluid from patients with multiple sclerosis. Adv Exp Med Biol 935:89–98

    Article  CAS  PubMed  Google Scholar 

  70. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V et al (2015) Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wilson MR, Shanbhag NM, Reid MJ, Singhal NS, Gelfand JM, Sample HA et al (2015) Diagnosing Balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol 78(5):722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ortiz-Alcantara JM, Segura-Candelas JM, Garces-Ayala F, Gonzalez-Duran E, Rodriguez-Castillo A, Alcantara-Perez P et al (2016) Fatal Psychrobacter sp. infection in a pediatric patient with meningitis identified by metagenomic next-generation sequencing in cerebrospinal fluid. Arch Microbiol 198(2):129–135

    Article  PubMed  CAS  Google Scholar 

  73. Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Moller N et al (2014) Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 52(1):139–146

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schmidt K, Mwaigwisya S, Crossman LC, Doumith M, Munroe D, Pires C et al (2017) Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrob Chemother 72(1):104–114

    Article  CAS  PubMed  Google Scholar 

  75. Greninger AL, Messacar K, Dunnebacke T, Naccache SN, Federman S, Bouquet J et al (2015) Clinical metagenomic identification of Balamuthia mandrillaris encephalitis and assembly of the draft genome: the continuing case for reference genome sequencing. Genome Med 7:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Charalampous T, Richardson H, Kay GL, Baldan R, Jeanes C, Rae D et al (2018) Rapid diagnosis of lower respiratory infection using nanopore-based clinical metagenomics. bioRxiv:387548

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Schrenzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruppé, E., Charretier, Y., Lazarevic, V., Schrenzel, J. (2021). Integrating Metagenomics in the Routine Lab. In: Moran-Gilad, J., Yagel, Y. (eds) Application and Integration of Omics-powered Diagnostics in Clinical and Public Health Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-62155-1_8

Download citation

Publish with us

Policies and ethics