Skip to main content

Abstract

Whole-genome sequencing (WGS) can provide a detailed map of the genetic determinants of any microorganism, including pathogens. In clinical microbiology, the use of WGS to assess the content in genes encoding virulence factors as well as in mutations associated to virulence brings new perspectives to the field. In a clinical setting, WGS should be considered only (i) when the results may change the therapy or the clinical management, or (ii) for public health surveillance of the emergence of a hypervirulent clone (both by typing and virulence factors detection approaches). In this chapter, we will review the main current and foreseen clinical applications where WGS has or could have an added value regarding the presence of virulence factors. In addition, we will discuss the main technical approaches and limitations of WGS as well as the validation and interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13(9):601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bertelli C, Greub G (2013) Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect 19(9):803–813

    Article  CAS  PubMed  Google Scholar 

  3. Tagini F, Greub G (2017) Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur J Clin Microbiol Infect Dis 36(11):2007–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casadevall A, Pirofski L (2003) The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 1(1):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rudkin JK, McLoughlin RM, Preston A, Massey RC (2017) Bacterial toxins: offensive, defensive, or something else altogether? PLoS Pathog 13(9):e1006452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Peraro MD, van der Goot FG (2015) Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 14:77

    Article  CAS  Google Scholar 

  7. Macfarlane MG (1950) The biochemistry of bacterial toxins. 5. Variation in haemolytic activity of immunologically distinct lecithinases towards erythrocytes from different species. Biochem J 47(3):270–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henkel JS, Baldwin MR, Barbieri JT (2010) Toxins from Bacteria. EXS 100:1–29

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Berube BJ, Bubeck Wardenburg J (2013) Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 5(6):1140–1166

    Article  PubMed  PubMed Central  Google Scholar 

  10. Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 0:32–37

    Article  CAS  Google Scholar 

  11. Kayal S, Charbit A (2006) Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions. FEMS Microbiol Rev 30(4):514–529

    Article  CAS  PubMed  Google Scholar 

  12. Alouf JE (1980) Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmacol Ther 11(3):661–717

    Article  CAS  PubMed  Google Scholar 

  13. Sharp GW, Hynie S (1971) Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229(5282):266–269

    Article  CAS  PubMed  Google Scholar 

  14. Chen LC, Rohde JE, Sharp GW (1971) Intestinal adenyl-cyclase activity in human cholera. Lancet Lond Engl 1(7706):939–941

    Article  CAS  Google Scholar 

  15. Cohen MS, Chang P (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14(3):236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL et al (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A 89(3):947–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140

    Article  CAS  PubMed  Google Scholar 

  18. Schulz S, Green CK, Yuen PS, Garbers DL (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63(5):941–948

    Article  CAS  PubMed  Google Scholar 

  19. Melvin JA, Scheller EV, Miller JF, Cotter PA (2014) Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12(4):274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graf R, Codina J, Birnbaumer L (1992) Peptide inhibitors of ADP-ribosylation by pertussis toxin are substrates with affinities comparable to those of the trimeric GTP-binding proteins. Mol Pharmacol 42(5):760–764

    CAS  PubMed  Google Scholar 

  21. Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 12(9):599–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyer NH, Weinstein L (1948) Diphtheritic myocarditis. N Engl J Med 239(24):913–919

    Article  CAS  PubMed  Google Scholar 

  23. Kneen R, Nguyen MD, Solomon T, Pham NG, Parry CM, Nguyen TTH et al (2004) Clinical features and predictors of diphtheritic cardiomyopathy in Vietnamese children. Clin Infect Dis Off Publ Infect Dis Soc Am 39(11):1591–1598

    Article  Google Scholar 

  24. Melton-Celsa AR. Shiga Toxin (Stx) classification, structure, and function. Microbiol Spectr [Internet]. 2014 [cited 2019 Feb 5];2(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270005/

  25. Li S, Huang H, Rao X, Chen W, Wang Z, Hu X (2014) Phenol-soluble modulins: novel virulence-associated peptides of staphylococci. Future Microbiol 9(2):203–216

    Article  CAS  PubMed  Google Scholar 

  26. Cheung GYC, Joo H-S, Chatterjee SS, Otto M (2014) Phenol-soluble modulins – critical determinants of staphylococcal virulence. FEMS Microbiol Rev 38(4):698–719

    Article  CAS  PubMed  Google Scholar 

  27. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DYM, Schlievert PM (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26(3):422–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossetto O, Scorzeto M, Megighian A, Montecucco C (2013) Tetanus neurotoxin. Toxicon 66:59–63

    Article  CAS  PubMed  Google Scholar 

  29. Rossetto O, Pirazzini M, Montecucco C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12(8):535–549

    Article  CAS  PubMed  Google Scholar 

  30. Galán JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284(5418):1322–1328

    Article  PubMed  Google Scholar 

  31. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L et al (1998) Genome sequence of an obligate intracellular pathogen of humans: chlamydia trachomatis. Science 282(5389):754–759

    Article  CAS  PubMed  Google Scholar 

  32. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS et al (2017) Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15(6):323–337

    Article  CAS  PubMed  Google Scholar 

  33. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in gram-negative and gram-positive bacteria. Mol Microbiol 107(4):455–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12(2):137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brodmann M, Dreier RF, Broz P, Basler M (2017) Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 16(8):15853

    Article  CAS  Google Scholar 

  36. Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R (2015) ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis 95(Supplement 1):S150–S154

    Article  CAS  PubMed  Google Scholar 

  37. Bottai D, Gröschel MI, Brosch R (2017) Type VII secretion systems in gram-positive bacteria. Curr Top Microbiol Immunol 404:235–265

    CAS  PubMed  Google Scholar 

  38. Renshaw PS, Panagiotidou P, Whelan A, Gordon SV, Hewinson RG, Williamson RA et al (2002) Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem 277(24):21598–21603

    Article  CAS  PubMed  Google Scholar 

  39. Okaro U, Addisu A, Casanas B, Anderson B (2017) Bartonella species, an emerging cause of blood-culture-negative endocarditis. Clin Microbiol Rev 30(3):709–746

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oliveira WF, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho LCBB et al (2018) Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 98(2):111–117

    Article  CAS  PubMed  Google Scholar 

  41. Tagini F, Pillonel T, Asner S, Prod’hom G, Greub G (2016) Draft genome sequence of a cardiobacterium hominis strain isolated from blood cultures of a patient with infective endocarditis. Genome Announc 4(5)

    Google Scholar 

  42. Riess T, Raddatz G, Linke D, Schäfer A, Kempf VAJ (2007) Analysis of Bartonella adhesin a expression reveals differences between various B. henselae strains. Infect Immun 75(1):35–43

    Article  CAS  PubMed  Google Scholar 

  43. Yumoto H, Azakami H, Nakae H, Matsuo T, Ebisu S (1996) Cloning, sequencing and expression of an Eikenella corrodens gene encoding a component protein of the lectin-like adhesin complex. Gene 183(1–2):115–121

    Article  CAS  PubMed  Google Scholar 

  44. Merz AJ, Enns CA, So M (1999) Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 32(6):1316–1332

    Article  CAS  PubMed  Google Scholar 

  45. Kolappan S, Coureuil M, Yu X, Nassif X, Egelman EH, Craig L (2016) Structure of the Neisseria meningitidis type IV pilus. Nat Commun 7:13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  47. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575

    Article  CAS  PubMed  Google Scholar 

  48. Peetermans M, Vanassche T, Liesenborghs L, Claes J, Vande Velde G, Kwiecinksi J et al (2014) Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol 14:310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. McArthur JD, Cook SM, Venturini C, Walker MJ (2012) The role of streptokinase as a virulence determinant of Streptococcus pyogenes--potential for therapeutic targeting. Curr Drug Targets 13(3):297–307

    Article  CAS  PubMed  Google Scholar 

  50. Elgaml A, Miyoshi S-I (2017) Regulation systems of protease and hemolysin production in Vibrio vulnificus. Microbiol Immunol 61(1):1–11

    Article  CAS  PubMed  Google Scholar 

  51. Hyde JA (2017) Borrelia burgdorferi keeps moving and carries on: a review of Borrelial dissemination and invasion. Front Immunol [Internet]. [cited 2019 Feb 11];8. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2017.00114/full

  52. Boehm M, Simson D, Escher U, Schmidt A-M, Bereswill S, Tegtmeyer N et al (2018) Function of serine protease HtrA in the lifecycle of the foodborne pathogen campylobacter jejuni. Eur J Microbiol Immunol 8(3):70–77

    CAS  Google Scholar 

  53. Storisteanu DML, Pocock JM, Cowburn AS, Juss JK, Nadesalingam A, Nizet V et al (2017) Evasion of neutrophil extracellular traps by respiratory pathogens. Am J Respir Cell Mol Biol 56(4):423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Delany I, Seib KL (2012) Stress response in microbiology. Horizon Scientific Press, Requena JM. 450 p

    Google Scholar 

  55. Mandell GL (1975) Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal--leukocyte interaction. J Clin Invest 55(3):561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Messina CGM, Reeves EP, Roes J, Segal AW (2002) Catalase negative Staphylococcus aureus retain virulence in mouse model of chronic granulomatous disease. FEBS Lett 518(1–3):107–110

    Article  CAS  PubMed  Google Scholar 

  57. Berenger B, Chen J, Bernier A-M, Bernard K (2016) Draft whole-genome sequence of a catalase-negative Staphylococcus aureus subsp. aureus (sequence type 25) Strain isolated from a patient with endocarditis and septic arthritis. Genome Announc 4(6)

    Google Scholar 

  58. Hyams C, Camberlein E, Cohen JM, Bax K, Brown JS (2010) The <em>Streptococcus</em> <em>pneumoniae</em> capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 78(2):704

    Article  CAS  PubMed  Google Scholar 

  59. Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264(1):182–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ray K, Marteyn B, Sansonetti PJ, Tang CM (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 7(5):333–340

    Article  CAS  PubMed  Google Scholar 

  61. Mitchell G, Chen C, Portnoy DA (2016) Strategies used by bacteria to grow in macrophages. Microbiol Spectr 4(3)

    Google Scholar 

  62. Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A et al (2005) Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192(5):783–790

    Article  CAS  PubMed  Google Scholar 

  63. Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN (2003) Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci U S A 100(7):4215–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. von Pawel-Rammingen U, Johansson BP, Björck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21(7):1607–1615

    Article  Google Scholar 

  65. McNeil LK, Zagursky RJ, Lin SL, Murphy E, Zlotnick GW, Hoiseth SK et al (2013) Role of factor H binding protein in Neisseria meningitidis virulence and its potential as a vaccine candidate to broadly protect against meningococcal disease. Microbiol Mol Biol Rev MMBR 77(2):234–252

    Article  CAS  PubMed  Google Scholar 

  66. Merino S, Camprubí S, Albertí S, Benedí VJ, Tomás JM (1992) Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun 60(6):2529–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sheldon JR, Laakso HA, Heinrichs DE (2016) Iron acquisition strategies of bacterial pathogens. Microbiol Spectr. 4(2)

    Google Scholar 

  68. Tao X, Schiering N, Zeng HY, Ringe D, Murphy JR (1994) Iron, DtxR, and the regulation of diphtheria toxin expression. Mol Microbiol 14(2):191–197

    Article  CAS  PubMed  Google Scholar 

  69. Cornejo E, Schlaermann P, Mukherjee S (2017) How to rewire the host cell: a home improvement guide for intracellular bacteria. J Cell Biol 216(12):3931–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Samanta D, Mulye M, Clemente TM, Justis AV, Gilk SD (2017) Manipulation of host cholesterol by obligate intracellular bacteria. Front Cell Infect Microbiol 7:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Juhas M (2015) Horizontal gene transfer in human pathogens. Crit Rev Microbiol 41(1):101–108

    Article  CAS  PubMed  Google Scholar 

  72. Tagini F, Aubert B, Troillet N, Pillonel T, Praz G, Crisinel PA et al (2017) Importance of whole genome sequencing for the assessment of outbreaks in diagnostic laboratories: analysis of a case series of invasive Streptococcus pyogenes infections. Eur J Clin Microbiol Infect Dis 36(7):1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF, Gajer P et al (2008) The Pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190(20):6881–6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Namouchi A, Didelot X, Schöck U, Gicquel B, Rocha EPC (2012) After the bottleneck: genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res 22(4):721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Churchward G (2007) The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci. Mol Microbiol 64(1):34–41

    Article  CAS  PubMed  Google Scholar 

  76. Quereda JJ, Cossart P (2017) Regulating bacterial virulence with RNA. Ann Rev Microbiol 71:263–280

    Article  CAS  Google Scholar 

  77. Kazmierczak MJ, Wiedmann M, Boor KJ (2005) Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev MMBR 69(4):527–543

    Article  CAS  PubMed  Google Scholar 

  78. Xiong YQ, Fowler VG, Yeaman MR, Perdreau-Remington F, Kreiswirth BN, Bayer AS (2009) Phenotypic and genotypic characteristics of persistent methicillin-resistant Staphylococcus aureus bacteremia in vitro and in an experimental endocarditis model. J Infect Dis 199(2):201–208

    Article  CAS  PubMed  Google Scholar 

  79. Chattaway MA, Day M, Mtwale J, White E, Rogers J, Day M et al (2017) Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh. J Med Microbiol 66(10):1429–1435

    Article  PubMed  PubMed Central  Google Scholar 

  80. Robins-Browne RM, Holt KE, Ingle DJ, Hocking DM, Yang J, Tauschek M (2016) Are Escherichia coli Pathotypes still relevant in the era of whole-genome sequencing? Front Cell Infect Microbiol 6:141

    Article  PubMed  PubMed Central  Google Scholar 

  81. Clements A, Young JC, Constantinou N, Frankel G (2012) Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3(2):71–87

    Article  PubMed  PubMed Central  Google Scholar 

  82. Walters LL, Raterman EL, Grys TE, Welch RA (2012) Atypical Shigella boydii 13 encodes virulence factors seen in attaching and effacing Escherichia coli. FEMS Microbiol Lett 328(1):20–25

    Article  CAS  PubMed  Google Scholar 

  83. Tagini F, Pillonel T, Croxatto A, Bertelli C, Koutsokera A, Lovis A et al (2018) Distinct genomic features characterize two clades of Corynebacterium diphtheriae: proposal of Corynebacterium diphtheriae Subsp. diphtheriae Subsp. nov. and Corynebacterium diphtheriae Subsp. lausannense Subsp. nov. Front Microbiol 9:1743

    Article  PubMed  PubMed Central  Google Scholar 

  84. Saeed K, Gould I, Esposito S, Ahmad-Saeed N, Ahmed SS, Alp E et al (2018) Panton–valentine leukocidin-positive Staphylococcus aureus: a position statement from the International Society of Chemotherapy. Int J Antimicrob Agents 51(1):16–25

    Article  CAS  PubMed  Google Scholar 

  85. Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC (2013) The role of the Panton-valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 13(1):43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grumann D, Nübel U, Bröker BM (2014) Staphylococcus aureus toxins--their functions and genetics. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 21:583–592

    CAS  Google Scholar 

  87. Micek ST, Dunne M, Kollef MH (2005) Pleuropulmonary complications of Panton-valentine Leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus: importance of treatment with antimicrobials inhibiting exotoxin production. Chest 128(4):2732–2738

    Article  CAS  PubMed  Google Scholar 

  88. Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ et al (2014) Predicting the virulence of MRSA from its genome sequence. Genome Res 24(5):839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giulieri SG, Holmes NE, Stinear TP, Howden BP (2016) Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections. Expert Rev Anti-Infect Ther 14(11):1023–1036

    Article  CAS  PubMed  Google Scholar 

  90. Wilkins AL, Steer AC, Smeesters PR, Curtis N (2017) Toxic shock syndrome – the seven Rs of management and treatment. J Infect 74:S147–S152

    Article  PubMed  Google Scholar 

  91. Gilchrist CA, Turner SD, Riley MF, Petri WA, Hewlett EL (2015) Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev 28(3):541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rossen JWA, Friedrich AW, Moran-Gilad J (2018) Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect 24(4):355–360

    Article  CAS  PubMed  Google Scholar 

  93. Carey RB, Bhattacharyya S, Kehl SC, Matukas LM, Pentella MA, Salfinger M et al (2018) Implementing a quality management system in the medical microbiology laboratory. Clin Microbiol Rev 31(3)

    Google Scholar 

  94. Kozyreva VK, Truong C-L, Greninger AL, Crandall J, Mukhopadhyay R, Chaturvedi V (2017) Validation and implementation of clinical laboratory improvements act-compliant whole-genome sequencing in the public health microbiology laboratory. J Clin Microbiol 55(8):2502–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moran-Gilad J, Sintchenko V, Pedersen SK, Wolfgang WJ, Pettengill J, Strain E et al (2015) Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities. BMC Infect Dis 15:174

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fricke WF, Rasko DA (2014) Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions. Nat Rev Genet 15(1):49–55

    Article  CAS  PubMed  Google Scholar 

  97. Quainoo S, Coolen JPM, van Hijum SAFT, Huynen MA, Melchers WJG, van Schaik W et al (2017) Whole-genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. Clin Microbiol Rev 30(4):1015–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E (2018) Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 24(4):335–341

    Article  CAS  PubMed  Google Scholar 

  99. CNBC.com AP special to. Illumina manufactures a genetically-designed market disaster [Internet]. 2016 [cited 2017 Oct 20]. Available from: https://www.cnbc.com/2016/10/12/illumina-manufactures-a-genetically-designed-market-disaster.html

  100. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, et al (2018) Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genomics [Internet]. [cited 2019 Feb 13] 4(9). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202445/

  103. Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59

    Article  PubMed  CAS  Google Scholar 

  104. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinforma Oxf Engl 25(16):2078–2079

    Article  CAS  Google Scholar 

  105. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-wheeler transform. Bioinforma Oxf Engl 26(5):589–595

    Article  CAS  Google Scholar 

  106. Méric G, Mageiros L, Pensar J, Laabei M, Yahara K, Pascoe B et al (2018) Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat Commun 9(1):5034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gibson MK, Forsberg KJ, Dantas G (2015) Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 9(1):207–216

    Article  CAS  PubMed  Google Scholar 

  108. Abby SS, Rocha EPC (1615) Identification of protein secretion systems in bacterial genomes using MacSyFinder. Methods Mol Biol Clifton NJ 2017:1–21

    Google Scholar 

  109. Strauß L, Ruffing U, Abdulla S, Alabi A, Akulenko R, Garrine M et al (2016) Detecting Staphylococcus aureus virulence and resistance genes: a comparison of whole-genome sequencing and DNA microarray technology. J Clin Microbiol 54(4):1008–1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y et al (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33(Database issue):D325–D328

    Article  CAS  PubMed  Google Scholar 

  111. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 44(D1):D694–D697

    Article  CAS  PubMed  Google Scholar 

  112. Liu B, Zheng D, Jin Q, Chen L, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692

    Article  CAS  PubMed  Google Scholar 

  113. Sayers S, Li L, Ong E, Deng S, Fu G, Lin Y et al (2019) Victors: a web-based knowledge base of virulence factors in human and animal pathogens. Nucleic Acids Res 47(D1):D693–D700

    Article  CAS  PubMed  Google Scholar 

  114. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL et al (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42(Database issue):D581–D591

    Article  CAS  PubMed  Google Scholar 

  115. Mao C, Abraham D, Wattam AR, Wilson MJC, Shukla M, Yoo HS et al (2015) Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinforma Oxf Engl 31(2):252–258

    Article  CAS  Google Scholar 

  116. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017;45(D1):D535–42

    Google Scholar 

  117. Urban M, Cuzick A, Rutherford K, Irvine A, Pedro H, Pant R et al (2017) PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database. Nucleic Acids Res 45(Database issue):D604–D610

    Article  CAS  PubMed  Google Scholar 

  118. Mei J-M, Nourbakhsh F, Ford CW, Holden DW (1997) Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 26(2):399–407

    Article  CAS  PubMed  Google Scholar 

  119. Korves T, Colosimo ME (2009) Controlled vocabularies for microbial virulence factors. Trends Microbiol 17(7):279–285

    Article  CAS  PubMed  Google Scholar 

  120. Lazarevic V, Gaïa N, Girard M, Leo S, Cherkaoui A, Renzi G et al (2018) When bacterial culture fails, metagenomics can help: a case of chronic hepatic Brucelloma assessed by next-generation sequencing. Front Microbiol 9:1566

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G et al (2014) Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med 370(25):2408–2417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10(3):426–441

    Article  CAS  PubMed  Google Scholar 

  123. Crisan A, McKee G, Munzner T, Gardy JL (2018) Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory. PeerJ 6:e4218

    Article  PubMed  PubMed Central  Google Scholar 

  124. Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H (2017) Hypervirulence and hypermucoviscosity: two different but complementary Klebsiella spp. phenotypes? Virulence 8(7):1111–1123

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ye M, Tu J, Jiang J, Bi Y, You W, Zhang Y et al (2016) Clinical and genomic analysis of liver abscess-causing Klebsiella pneumoniae identifies new liver abscess-associated virulence genes. Front Cell Infect Microbiol 6:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Cole JN, Barnett TC, Nizet V, Walker MJ (2011) Molecular insight into invasive group a streptococcal disease. Nat Rev Microbiol 9(10):724–736

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Greub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tagini, F., Pillonel, T., Greub, G. (2021). Whole-Genome Sequencing for Bacterial Virulence Assessment. In: Moran-Gilad, J., Yagel, Y. (eds) Application and Integration of Omics-powered Diagnostics in Clinical and Public Health Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-62155-1_4

Download citation

Publish with us

Policies and ethics