Skip to main content

How to Use Antibiotics in Critically Ill Patients with Sepsis and Septic Shock

  • Chapter
  • First Online:
Infections in Surgery

Part of the book series: Hot Topics in Acute Care Surgery and Trauma ((HTACST))

  • 1478 Accesses

Abstract

Antimicrobials along with source control are at the center of therapy for the septic patient at risk for septic shock. Not only is early and appropriate coverage key to optimizing outcomes, but aggressive and continual reassessment for de-escalation therapy is equally important to avoid the long-term deleterious impact of excessive and unnecessary antimicrobial therapy. This chapter uses the current definition of sepsis and septic shock to guide the discussion as it is this specific patient population to which the surviving sepsis guidelines apply. Further discussion includes options to assist with antimicrobial selection and duration including the use of cultures, biomarkers, and antibiograms. Finally the role of pharmacokinetics and pharmacodynamics to assist with dosing regimens for the individual medications is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bone RC, Balk RA, Cerra FB, et al. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864–74.

    Article  Google Scholar 

  2. Levy MM, Fink MP, Marshall JC, et al. International sepsis definitions conference. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med. 2003;29(4):530–8.

    Article  PubMed  Google Scholar 

  3. Vincent J-L, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet. 2013;381(9868):774–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for Sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shankar-Hari M, Phillips GS, Levy ML, et al. Sepsis definitions task force: developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:775–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rhodes A, Evans L, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Critical Care Med. 2017;45(3):486–552.

    Article  Google Scholar 

  8. Dellinger RP. Foreword. The future of sepsis performance improvement. Crit Care Med. 2015;43:1787–9.

    Article  PubMed  Google Scholar 

  9. Jones SL, Ashton CM, Kiehne L, et al. Reductions in sepsis mortality and costs after design and implementation of a nurse-based early recognition and response program. Jt Comm J Qual Patient Saf. 2015;41:483–91.

    PubMed  PubMed Central  Google Scholar 

  10. Levy MM, Pronovost PJ, Dellinger RP, et al. Sepsis change bundles: converting guidelines into meaningful change in behavior and clinical outcome. Crit Care Med. 2004;32:S595–7.

    Article  PubMed  Google Scholar 

  11. Rhodes A, Phillips G, Beale R, et al. The surviving sepsis campaign bundles and outcome: results from the international multicentre prevalence study on Sepsis (the IMPreSS study). Intensive Care Med. 2015;41:1620–8.

    Article  PubMed  Google Scholar 

  12. Pollack LA, van Santen KL, Weiner LM, et al. Antibiotic stewardship programs in U.S. acute care hospitals: findings from the 2014 National Healthcare Safety Network annual hospital survey. Clin Infect Dis. 2016;63:443–9.

    Article  PubMed  Google Scholar 

  13. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96.

    Article  PubMed  Google Scholar 

  14. Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42:1749–55.

    Article  CAS  PubMed  Google Scholar 

  15. Barie PS, Hydo LJ, Shou J, et al. Influence of antibiotic therapy on mortality of critical surgical illness caused or complicated by infection. Surg Infect. 2005;6:41–54.

    Article  Google Scholar 

  16. Guo Y, Gao W, Yang H, et al. De-escalation of empiric antibiotics in patients with severe sepsis or septic shock: a meta-analysis. Heart Lung. 2016;45:454–9.

    Article  PubMed  Google Scholar 

  17. Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2013;40(1):32–40.

    Article  PubMed  Google Scholar 

  18. Sawyer RG, Claridge JA, Nathens AB, et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med. 2015;372:1996–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu C, Bayer A, Cosgrove SE, et al.; Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.

    Article  Google Scholar 

  20. Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:e1–50.

    Article  PubMed  Google Scholar 

  21. Weiss CH, Moazed F, McEvoy CA, et al. Prompting physicians to address a daily checklist and process of care and clinical outcomes: a single-site study. Am J Respir Crit Care Med. 2011;184:680–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaufman D, Haas CE, Edinger R, et al. Antibiotic susceptibility in the surgical intensive care unit compared with the hospital-wide antibiogram. Arch Surg. 1998;133:1041–5.

    Article  CAS  PubMed  Google Scholar 

  23. Moellering RC. Principles of antiinfective therapy. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious disease. 4th ed. New York, NY: Churchill Livingstone; 1995. p. 199–212.

    Google Scholar 

  24. Moore RD, Smith CR, Lietman PS. Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am J Med. 1984;77:657–62.

    Article  CAS  PubMed  Google Scholar 

  25. Men P, Li HB, Zhai SD, et al. Association between the AUC0-24/MIC ratio of vancomycin and its clinical effectiveness: a systematic review and meta-analysis. PLoS One. 2016;11:e0146224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intra-venous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37:1073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schentag JJ, Smith IL, Swanson DJ, et al. Role for dual individualization with cefmenoxime. Am J Med. 1984;77:43–50.

    Article  CAS  PubMed  Google Scholar 

  28. Barza M, Ioannidis JP, Cappelleri JC, et al. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ. 1996;312:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Zanten AR, Polderman KH, van Geijlswijk IM, et al. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23:422–30.

    Article  PubMed  CAS  Google Scholar 

  30. Dunbar LM, Wunderink RG, Habib MP, et al. High-dose, short- course levofloxacin for community-acquired pneumonia: a new treatment paradigm. Clin Infect Dis. 2003;37:752–60.

    Article  CAS  PubMed  Google Scholar 

  31. Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009;49:325–7.

    Article  PubMed  Google Scholar 

  32. Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock–does the dose matter? Crit Care. 2009;13:214.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang JT, Fang CT, Chen YC, et al. Necessity of a loading dose when using vancomycin in critically ill patients. J Antimicrob Chemother. 2001;47:246.

    Article  CAS  PubMed  Google Scholar 

  34. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–51.

    Article  CAS  PubMed  Google Scholar 

  35. Rhodes NJ, MacVane SH, Kuti JL, et al. Impact of loading doses on the time to adequate predicted beta-lactam concentrations in prolonged and continuous infusion dosing schemes. Clin Infect Dis. 2014;59:905–7.

    Article  PubMed  Google Scholar 

  36. Falagas ME, Tansarli GS, Ikawa K, et al. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–82.

    Article  CAS  PubMed  Google Scholar 

  37. Yusuf E, Spapen H, Piérard D. Prolonged vs intermittent infusion of piperacillin/tazobactam in critically ill patients: a narrative and systematic review. J Crit Care. 2014;29:1089–95.

    Article  CAS  PubMed  Google Scholar 

  38. Roberts JA, Abdul-Aziz MH, Lipman J, et al.; International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509.

    Article  Google Scholar 

  39. Kumar A, Safdar N, Kethireddy S, et al. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med. 2010;38:1651–64.

    Article  CAS  PubMed  Google Scholar 

  40. Kumar A, Zarychanski R, Light B, et al.; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med. 2010;38:1773–85.

    Article  CAS  Google Scholar 

  41. Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis. 2004;4:519–27.

    Article  PubMed  Google Scholar 

  42. Paul M, Silbiger I, Grozinsky S, Soares-Weiser K, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev. 2006;1:CD003344.

    Google Scholar 

  43. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Infectious Diseases Society of America: clinical practice guideline for the use of anti-microbial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011;52:e56–93.

    Article  PubMed  Google Scholar 

  44. Pittet D, Monod M, Suter PM, et al. Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg. 1994;220:751–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blumberg HM, Jarvis WR, Soucie JM, et al.; National Epidemiology of Mycoses Survey (NEMIS) Study Group. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis. 2001;33:177–86.

    Article  Google Scholar 

  46. Bow EJ, Evans G, Fuller J, et al. Canadian clinical practice guidelines for invasive candidiasis in adults. Can J Infect Dis Med Microbiol. 2010;21:e122–50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collom, M., Duane, T.M. (2021). How to Use Antibiotics in Critically Ill Patients with Sepsis and Septic Shock. In: Sartelli, M., Coimbra, R., Pagani, L., Rasa, K. (eds) Infections in Surgery. Hot Topics in Acute Care Surgery and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-62116-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62116-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62115-5

  • Online ISBN: 978-3-030-62116-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics