Skip to main content

Mood Stabilizers: Pharmacology and Biochemistry

  • Reference work entry
  • First Online:
NeuroPsychopharmacotherapy
  • 39 Accesses

Abstract

Drugs successfully applied in the treatment of bipolar disorder have been termed mood stabilizers and include different pharmacological classes: antipsychotic agents, anti-convulsants, and lithium.

Contrary to the development of antipsychotic and antidepressive drugs, no drug has been developed on biological models or hypotheses of bipolar disorder. The most commonly applied drug lithium has been introduced based on findings by serendipity, and no unique pharmacological mechanism of mood stabilization was identified so far. However, several mood stabilizers share a modulation of inositol- and GSK-3β-mediated pathways leading to neuroprotection and increased neuronal plasticity.

Future hypothesis-driven drug development is presently limited since (I) bipolar disorder results from a large spectrum of molecular mechanisms also associated and shared with other psychiatric morbidities and (II) animal models allow to address only neurobiological aspects well conserved across species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20(6):661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aringhieri S, et al. Molecular targets of atypical antipsychotics: from mechanism of action to clinical differences. Pharmacol Ther. 2018;192:20. Ahead of print

    Article  CAS  PubMed  Google Scholar 

  • Aubry J-M, et al. Early effects of mood stabilizers on the Akt/GSK-3beta signaling pathway and on cell survival and proliferation. Psychopharmacology. 2009;205(3):419–29.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu J-M, et al. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell. 2008;132(1):125–36.

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989;59(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  • Cade JF. Lithium salts in the treatment of psychotic excitement. Med J Aust. 1949;2(10):349–52.

    Article  CAS  PubMed  Google Scholar 

  • Chiu C-T, et al. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev. 2013;65(1):105–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppen A, Shaw DM. The distribution of electrolytes and water in patients after taking lithium carbonate. Lancet. 1967;2(7520):805–6.

    Article  CAS  PubMed  Google Scholar 

  • Davis KL, et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148(11):1474–86.

    Article  CAS  PubMed  Google Scholar 

  • Ferré S, et al. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev. 2014;66(2):413–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fribourg M, et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell. 2011;147(5):1011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci. 2011;32(7):420–34.

    Article  CAS  PubMed  Google Scholar 

  • Gurvich N, Klein PS. Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol Ther. 2002;96(1):45–66.

    Article  CAS  PubMed  Google Scholar 

  • Hiemke C, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018;51(1–02):9–62.

    CAS  PubMed  Google Scholar 

  • Johannessen CU, Johannessen SI. Valproate: past, present, and future. CNS Drug Rev. 2003;9(2):199–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci. 2003;24(9):441–3.

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry. 2001;158(3):360–9.

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T. Efficacy at G-protein-coupled receptors. Nat Rev Drug Discov. 2002;1(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  • Kenakin TP. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Discov. 2009;8(8):617–26.

    Article  CAS  PubMed  Google Scholar 

  • Ketter TA, Manji HK, Post RM. Potential mechanisms of action of lamotrigine in the treatment of bipolar disorders. J Clin Psychopharmacol. 2003;23(5):484–95.

    Article  CAS  PubMed  Google Scholar 

  • López-Muñoz F, et al. A history of the pharmacological treatment of bipolar disorder. Int J Mol Sci. 2018;19(7):2143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manji HK, Lenox RH. Signaling: cellular insights into the pathophysiology of bipolar disorder. Biol Psychiatry. 2000;48(6):518–30.

    Article  CAS  Google Scholar 

  • Manji HK, Zarate CA. Molecular and cellular mechanisms underlying mood stabilization in bipolar disorder: implications for the development of improved therapeutics. Mol Psychiatry. 2002;7 Suppl 1(S1):S1–7.

    Article  CAS  PubMed  Google Scholar 

  • Masri B, et al. Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci U S A. 2008;105(36):13656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto S, et al. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17(12):1206–27.

    Article  CAS  PubMed  Google Scholar 

  • Oruch R, et al. Lithium: a review of pharmacology, clinical uses, and toxicity. Eur J Pharmacol. 2014;740(C):464–73.

    Article  CAS  PubMed  Google Scholar 

  • Pisanu C, et al. Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: potential involvement of epigenetics. Neurosci Lett. 2018;669:24–31.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med. 2004a;10(7):685–92.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004b;5(7):553–64.

    Article  CAS  PubMed  Google Scholar 

  • Sarker S, et al. The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol. 2010;78(6):1026–35.

    Article  CAS  PubMed  Google Scholar 

  • Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci. 2012;35(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  • Schou M. Biology and pharmacology of the lithium ion. Pharmacol Rev. 1957;9(1):17–58.

    CAS  PubMed  Google Scholar 

  • Spirtes MA. Lithium levels in monkey and human brain after chronic, therapeutic, oral dosage. Pharmacol Biochem Behav. 1976;5(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  • Williams RSB, et al. A common mechanism of action for three mood-stabilizing drugs. Nature. 2002;417(6886):292–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Hommers .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hommers, L. (2022). Mood Stabilizers: Pharmacology and Biochemistry. In: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-62059-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62059-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62058-5

  • Online ISBN: 978-3-030-62059-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics