Skip to main content

Antidepressants: Molecular Aspects of SSRIs

  • Reference work entry
  • First Online:
NeuroPsychopharmacotherapy

Abstract

Major depressive disorders are among the most common psychiatric diseases featuring an insufficient serotonin signaling as the most prominent core patho-mechanism. Therefore, selective serotonin re-uptake inhibitors are firstly employed to restore serotonin neurotransmission in depressed patients. One member of this class of antidepressants, which selectively targets the serotonin transporter, is citalopram. Citalopram was first synthesized in 1972 and consists of equal molecular amounts of the isomers R-citalopram and S-citalopram, generally referred to as escitalopram, which exerts the antidepressant effect. Underlying citalopram’s mode of action is an allosteric mechanism, by which citalopram modulates its own binding to the primary binding site at the serotonin transporter. The following chapter will provide an overview of recent findings on the molecular binding characteristics determining citalopram’s docking to the serotonin transporter and the allosteric modulation of the citalopram-induced antidepressant response. Here, the focus will be on the acute citalopram-induced effects, which result in dose-dependent internalization of serotonin transporter molecules and diminished neuronal activity of serotonergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins EM, Barker EL, Blakely RD. Interactions of tryptamine derivatives with serotonin transporter species variants implicate transmembrane domain I in substrate recognition. Mol Pharmacol. 2001;59(3):514–23.

    CAS  PubMed  Google Scholar 

  • Aghajanian GK, Graham AW, Sheard MH. Serotonin-containing neurons in brain: depression of firing by monoamine oxidase inhibitors. Science. 1970;169(3950):1100–2.

    CAS  PubMed  Google Scholar 

  • Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, Meaney MJ, Nestler EJ. Treatment resistant depression: a multi-scale, systems biology approach. Neurosci Biobehav Rev. 2018;84:272–88.

    PubMed  Google Scholar 

  • Andersen J, Taboureau O, Hansen KB, Olsen L, Egebjerg J, Stromgaard K, Kristensen AS. Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem. 2009;284(15):10276–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen J, Olsen L, Hansen KB, Taboureau O, Jorgensen FS, Jorgensen AM, Bang-Andersen B, Egebjerg J, Stromgaard K, Kristensen AS. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J Biol Chem. 2010;285(3):2051–63.

    CAS  PubMed  Google Scholar 

  • Barker EL, Perlman MA, Adkins EM, Houlihan WJ, Pristupa ZB, Niznik HB, Blakely RD. High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis. An aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol. J Biol Chem. 1998;273(31):19459–68.

    CAS  PubMed  Google Scholar 

  • Barker EL, Moore KR, Rakhshan F, Blakely RD. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci. 1999;19(12):4705–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belmer A, Quentin E, Diaz SL, Guiard BP, Fernandez SP, Doly S, Banas SM, Pitychoutis PM, Moutkine I, Muzerelle A, Tchenio A, Roumier A, Mameli M, Maroteaux L. Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology. 2018;43(7):1623–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A. Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci. 2002;22(15):6766–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7(2):137–51.

    CAS  PubMed  Google Scholar 

  • Bigler AJ, Bøgesø KP, Toft A, Hansen V. Quantitative structure–activity relationships in a series of selective 5-HT uptake inhibitors. Eur J Med Chem. 1977;12:289–95.

    CAS  Google Scholar 

  • Blakely RD, Bauman AL. Biogenic amine transporters: regulation in flux. Curr Opin Neurobiol. 2000;10:328–36.

    CAS  PubMed  Google Scholar 

  • Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci. 1994;15(7):220–6.

    CAS  PubMed  Google Scholar 

  • Blier P, Piñeyro G, el Mansari M, Bergeron R, de Montigny C. Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci. 1998;861:204–16.

    CAS  PubMed  Google Scholar 

  • Bogeso K, Sánchez C. The discovery of citalopram and its refinement to escitalopram. In: Fischer J, Ganellin CR, Rotella DP, editors. Analogue-based drug design III. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012.

    Google Scholar 

  • Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci. 2018;72(1):3–12.

    CAS  PubMed  Google Scholar 

  • Canli T, Lesch KP. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci. 2007;10(9):1103–9.

    CAS  PubMed  Google Scholar 

  • Carneiro AM, Blakely RD. Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem. 2006;281(34):24769–80.

    CAS  PubMed  Google Scholar 

  • Cathala A, Devroye C, Drutel G, Revest JM, Artigas F, Spampinato U. Serotonin(2B) receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitory control on serotonin neurons. Exp Neurol. 2019;311:57–66.

    CAS  PubMed  Google Scholar 

  • Celada P, Bortolozzi A, Artigas F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs. 2013;27(9):703–16.

    CAS  PubMed  Google Scholar 

  • Celik L, Sinning S, Severinsen K, Hansen CG, Moller MS, Bols M, Wiborg O, Schiott B. Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J Am Chem Soc. 2008;130(12):3853–65.

    CAS  PubMed  Google Scholar 

  • Chen NH, Reith ME, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 2004;447(5):519–31.

    CAS  PubMed  Google Scholar 

  • Chen F, Larsen MB, Sanchez C, Wiborg O. The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors. Eur Neuropsychopharmacol. 2005;15:193–8.

    CAS  PubMed  Google Scholar 

  • Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, Watanabe N, Nakagawa A, Omori IM, McGuire H, Tansella M, Barbui C. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373:746–58.

    CAS  PubMed  Google Scholar 

  • Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532(7599):334–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Courtney NA, Ford CP. Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. J Physiol. 2016;594(4):953–65.

    CAS  PubMed  Google Scholar 

  • Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron. 2003;38(2):157–60.

    CAS  PubMed  Google Scholar 

  • Dankoski EC, Carroll S, Wightman RM. Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release. J Neurochem. 2016;136(6):1131–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dell’Osso L, Carmassi C, Mucci F, Marazziti D. Depression, serotonin and tryptophan. Curr Pharm Des. 2016;22(8):949–54.

    PubMed  Google Scholar 

  • Duric V, Duman RS. Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci. 2013;70(1):39–53.

    CAS  PubMed  Google Scholar 

  • El Mansari M, Sánchez C, Chouvet G, Renaud B, Haddjeri N. Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology. 2005;30(7):1269–77.

    PubMed  Google Scholar 

  • Gabrielsen M, Ravna AW, Kristiansen K, Sylte I. Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. J Mol Model. 2012;18(3):1073–85.

    CAS  PubMed  Google Scholar 

  • Gibbons RD, Hur K, Brown CH, Davis JM, Mann JJ. Benefits from antidepressants: synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine. Arch Gen Psychiatry. 2012;69:572–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guiard BP, Mansari ME, Murphy DL, Blier P. Altered response to the selective serotonin reuptake inhibitor escitalopram in mice heterozygous for the serotonin transporter: an electrophysiological and neurochemical study. Int J Neuropsychopharmacol. 2012;15(3):349–61.

    CAS  PubMed  Google Scholar 

  • Haase J, Killian AM, Magnani F, Williams C. Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans. 2001;29(Pt 6):722–8.

    CAS  PubMed  Google Scholar 

  • Haenisch B, Bonisch H. Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther. 2011;129:352–68.

    CAS  PubMed  Google Scholar 

  • Henry LK, Field JR, Adkins EM, Parnas ML, Vaughan RA, Zou MF, Newman AH, Blakely RD. Tyr-95 and Ile-172 in transmembrane segments 1 and 3 of human serotonin transporters interact to establish high affinity recognition of antidepressants. J Biol Chem. 2006;281(4):2012–23.

    CAS  PubMed  Google Scholar 

  • Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26(4):331–43.

    CAS  PubMed  Google Scholar 

  • Iceta R, Aramayona JJ, Mesonero JE, Alcalde AI. Regulation of the human serotonin transporter mediated by long-term action of serotonin in Caco-2 cells. Acta Physiol. 2008;193(1):57–65.

    CAS  Google Scholar 

  • Jacobsen JP, Plenge P, Sachs BD, Pehrson AL, Cajina M, Du Y, Roberts W, Rudder ML, Dalvi P, Robinson TJ, O’Neill SP, Khoo KS, Morillo CS, Zhang X, Caron MG. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology. 2014;231(23):4527–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayanthi LD, Samuvel DJ, Blakely RD, Ramamoorthy S. Evidence for biphasic effects of protein kinase C on serotonin transporter function, endocytosis, and phosphorylation. Mol Pharmacol. 2005;67(6):2077–87.

    CAS  PubMed  Google Scholar 

  • Jørgensen TN, Christensen PM, Gether U. Serotonin-induced down-regulation of cell surface serotonin transporter. Neurochem Int. 2014;73:107–12.

    PubMed  Google Scholar 

  • Kasper S, Sacher J, Klein N, Mossaheb N, Attarbaschi-Steiner T, Lanzenberger R, Spindelegger C, Asenbaum S, Holik A, Dudczak R. Differences in the dynamics of serotonin reuptake transporter occupancy may explain superior clinical efficacy of escitalopram versus citalopram. Int Clin Psychopharmacol. 2009;24(3):119–25.

    PubMed  Google Scholar 

  • Kim HS, Park IS, Park WK. NMDA receptor antagonists enhance 5-HT2 receptor-mediated behavior, head-twitch response, in mice. Life Sci. 1998;63:2305–11.

    CAS  PubMed  Google Scholar 

  • Kittler K, Lau T, Schloss P. Antagonists and substrates differentially regulate serotonin transporter cell surface expression in serotonergic neurons. Eur J Pharmacol. 2010;629(1–3):63–7.

    CAS  PubMed  Google Scholar 

  • Klein N, Sacher J, Geiss-Granadia T, Attarbaschi T, Mossaheb N, Lanzenberger R, Potzi C, Holik A, Spindelegger C, Asenbaum S, Dudczak R, Tauscher J, Kasper S. In vivo imaging of serotonin transporter occupancy by means of SPECT and [123I]ADAM in healthy subjects administered different doses of escitalopram or citalopram. Psychopharmacology. 2006;188:263–72.

    CAS  PubMed  Google Scholar 

  • Klein N, Sacher J, Geiss-Granadia T, Mossaheb N, Attarbaschi T, Lanzenberger R, Spindelegger C, Holik A, Asenbaum S, Dudczak R, Tauscher J, Kapser S. Higher serotonin transporter occupancy after multiple dose administration of escitalopram compared to citalopram: an [123I]ADAM SPECT study. Psychopharmacology. 2007;191:333–9.

    CAS  PubMed  Google Scholar 

  • Koldso H, Severinsen K, Tran TT, Celik L, Jensen HH, Wiborg O, Schiott B, Sinning S. The two enantiomers of citalopram bind to the human serotonin transporter in reversed orientations. J Am Chem Soc. 2010;132(4):1311–22.

    CAS  PubMed  Google Scholar 

  • Kraus C, Castrén E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity – links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev. 2017;77:317–6.

    CAS  PubMed  Google Scholar 

  • Krout D, Rodriquez M, Brose SA, Golovko MY, Henry LK, Thompson BJ. Inhibition of the serotonin transporter is altered by metabolites of selective serotonin and norepinephrine reuptake inhibitors and represents a caution to acute or chronic treatment paradigms. ACS Chem Neurosci. 2017;8(5):1011–8.

    CAS  PubMed  Google Scholar 

  • Lau T, Horschitz S, Bartsch D, Schloss P. Monitoring mouse serotonin transporter internalization in stem cell-derived serotonergic neurons by confocal laser scanning microscopy. Neurochem Int. 2009;54(3–4):271–6.

    CAS  PubMed  Google Scholar 

  • Lundberg J, Christophersen JS, Petersen KB, Loft H, Halldin C, Farde L. PET measurement of serotonin transporter occupancy: a comparison of escitalopram and citalopram. Int J Neuropsychopharmacol. 2007;10:777–85.

    CAS  PubMed  Google Scholar 

  • Mansari ME, Wiborg O, Mnie-Filali O, Benturquia N, Sánchez C, Haddjeri N. Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies. Int J Neuropsychopharmacol. 2007;10(1):31–40.

    PubMed  Google Scholar 

  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.

    PubMed Central  PubMed  Google Scholar 

  • Matthäus F, Haddjeri N, Sánchez C, Martí Y, Bahri S, Rovera R, Schloss P, Lau T. The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons. Eur Neuropsychopharmacol. 2016;26(11):1806–17.

    PubMed  Google Scholar 

  • Mitchell NC, Gould GG, Koek W, Daws LC. Ontogeny of SERT expression and antidepressant-like response to escitalopram in wild-type and SERT mutant mice. J Pharmacol Exp Ther. 2016;358(2):271–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mnie-Filali O, Faure C, Mansari ME, Lambas-Senas L, Berod A, Zimmer L, Sanchez C, Haddjeri N. R-citalopram prevents the neuronal adaptive changes induced by escitalopram. Neuroreport. 2007;18:1553–6.

    CAS  PubMed  Google Scholar 

  • Mnie-Filali O, Lau T, Matthaeus F, Abrial E, Delcourte S, El Mansari M, Pershon A, Schloss P, Sánchez C, Haddjeri N. Protein kinases alter the allosteric modulation of the serotonin transporter in vivo and in vitro. CNS Neurosci Ther. 2016;22(8):691–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montgomery S, Hansen T, Kasper S. Efficacy of escitalopram compared to citalopram: a meta-analysis. Int J Neuropsychopharmacol. 2011;14(2):261–8.

    CAS  PubMed  Google Scholar 

  • Mork A, Kreilgaard M, Sanchez C. The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats. Neuropharmacology. 2003;45:167–73.

    CAS  PubMed  Google Scholar 

  • Morrissette DA, Stahl SM. Modulating the serotonin system in the treatment of major depressive disorder. CNS Spectr. 2014;19(Suppl 1):57–67; quiz 54–7, 68

    PubMed  Google Scholar 

  • Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9(2):85–96.

    CAS  PubMed  Google Scholar 

  • Murray KE, Ressler KJ, Owens MJ. In vivo investigation of escitalopram’s allosteric site on the serotonin transporter. Pharmacol Biochem Behav. 2016;141:50–7.

    CAS  PubMed  Google Scholar 

  • Nemeroff CB. Psychopharmacology of affective disorders in the 21st century. Biol Psychiatry. 1998;44(7):517–25.

    CAS  PubMed  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34(1):13–25.

    CAS  PubMed  Google Scholar 

  • Oz M, Libby T, Kivell B, Jaligam V, Ramamoorthy S, Shippenberg TS. Real-time, spatially resolved analysis of serotonin transporter activity and regulation using the fluorescent substrate, ASP+. J Neurochem. 2010;114(4):1019–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503(7474):85–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piñeyro G, Blier P. Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev. 1999;51(3):533–91.

    PubMed  Google Scholar 

  • Plenge P, Gether U, Rasmussen SG. Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites. Eur J Pharmacol. 2007;567:1–9.

    CAS  PubMed  Google Scholar 

  • Prasad HC, Zhu CB, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC, Hewlett WA, Sutcliffe JS, Blakely RD. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 2005;102(32):11545–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol. 2011;44(3):449–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD. Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci. 1997;17(1):45–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quentin E, Belmer A, Maroteaux L. Somato-dendritic regulation of raphe serotonin neurons; a key to antidepressant action. Front Neurosci. 2018;12:982.

    PubMed Central  PubMed  Google Scholar 

  • Ramamoorthy S, Giovanetti E, Qian Y, Blakely RD. Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J Biol Chem. 1998;273(4):2458–66.

    CAS  PubMed  Google Scholar 

  • Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, Hen R, Leonardo ED. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron. 2010;65(1):40–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robson MJ, Quinlan MA, Blakely RD. Immune system activation and depression: roles of serotonin in the central nervous system and periphery. ACS Chem Neurosci. 2017;8(5):932–42.

    CAS  PubMed  Google Scholar 

  • Rudnick G. Serotonin transporters – structure and function. J Membr Biol. 2006;213(2):101–10.

    CAS  PubMed  Google Scholar 

  • Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S. A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci. 2005;25(1):29–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez C. The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram. Basic Clin Pharmacol Toxicol. 2006;99(2):91–5.

    CAS  PubMed  Google Scholar 

  • Sánchez C, Kreilgaard M. R-citalopram inhibits functional and 5-HTP-evoked behavioural responses to the SSRI, escitalopram. Pharmacol Biochem Behav. 2004;77(2):391–8.

    PubMed  Google Scholar 

  • Sánchez C, Bergqvist PB, Brennum LT, Gupta S, Hogg S, Larsen A, Wiborg O. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology. 2003;167(4):353–62.

    PubMed  Google Scholar 

  • Schloss P, Henn FA. New insights into the mechanisms of antidepressant therapy. Pharmacol Ther. 2004;102(1):47–60.

    CAS  PubMed  Google Scholar 

  • Stahl SM. Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord. 1998;51(3):215–35.

    CAS  PubMed  Google Scholar 

  • Stahl SM, Lee-Zimmerman C, Cartwright S, Morrissette DA. Serotonergic drugs for depression and beyond. Curr Drug Targets. 2013;14(5):578–85.

    CAS  PubMed  Google Scholar 

  • Thompson BJ, Jessen T, Henry LK, Field JR, Gamble KL, Gresch PJ, Carneiro AM, Horton RE, Chisnell PJ, Belova Y, McMahon DG, Daws LC, Blakely RD. Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter. Proc Natl Acad Sci U S A. 2011;108:3785–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Topiol S, Bang-Andersen B, Sanchez C, Bøgesø KP. Exploration of insights, opportunities and caveats provided by the X-ray structures of hSERT. Bioorg Med Chem Lett. 2016;26(20):5058–64.

    CAS  PubMed  Google Scholar 

  • Topiol S, Bang-Andersen B, Sanchez C, Plenge P, Loland CJ, Juhl K, Larsen K, Bregnedal P, Bøgesø KP. X-ray structure based evaluation of analogs of citalopram: compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT. Bioorg Med Chem Lett. 2017;27(3):470–8.

    CAS  PubMed  Google Scholar 

  • Törk I. Anatomy of the serotonergic system. Ann N Y Acad Sci. 1990;600:9–34; discussion 34–5

    PubMed  Google Scholar 

  • Vizi ES. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev. 2000;52(1):63–89.

    CAS  PubMed  Google Scholar 

  • Wood KM, Hashemi P. Fast-scan cyclic voltammetry analysis of dynamic serotonin responses to acute escitalopram. ACS Chem Neurosci. 2013;4(5):715–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  • World Health Organization (WHO). Depression and other common mental disorders, fact sheet no. 369; WHO reference number: WHO/MSD/MER/2017.2. 2017.

    Google Scholar 

  • Yu S, Holsboer F, Almeida OF. Neuronal actions of glucocorticoids: focus on depression. J Steroid Biochem Mol Biol. 2008;108(3–5):300–9.

    CAS  PubMed  Google Scholar 

  • Zhong H, Hansen KB, Boyle NJ, Han K, Muske G, Huang X, Egebjerg J, Sánchez C. An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant. Neurosci Lett. 2009;462(3):207–12.

    CAS  PubMed  Google Scholar 

  • Zhong H, Haddjeri N, Sanchez C. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter – a review of current understanding of its mechanism of action. Psychopharmacology. 2012a;219(1):1–13.

    CAS  PubMed  Google Scholar 

  • Zhong H, Sanchez C, Caron MG. Consideration of allosterism and interacting proteins in the physiological functions of the serotonin transporter. Biochem Pharmacol. 2012b;83(4):435–42.

    CAS  PubMed  Google Scholar 

  • Zhu R, Gruber HJ, Hinterdorfer P. Two ligand binding sites in serotonin transporter revealed by nanopharmacological force sensing. Methods Mol Biol. 2018;1814:19–33.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Lau .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Etievant, A., Haddjeri, N., Lau, T. (2022). Antidepressants: Molecular Aspects of SSRIs. In: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-62059-2_369

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62059-2_369

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62058-5

  • Online ISBN: 978-3-030-62059-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics