Skip to main content

Unraveling Notch Signaling in Reproductive Biology

  • Conference paper
  • First Online:
Advances in Animal Health, Medicine and Production

Abstract

Studies over last years have consolidated a relevant role for Notch signaling in mammalian reproductive biology and in reproductive pathological scenarios. Notch genes are dynamically transcribed and Notch proteins dynamically expressed in the reproductive tract. Involvement in key reproductive events is mainly related with the regulation of the pace of cell proliferation and differentiation. Physiologically, this occurs in spermatogenesis, along the epithelial seminiferous cycle, during folliculogenesis and luteal development along the estrous/menstrual cycle, as well as during establishment of pregnancy and placentation. Aberrant Notch signaling has also been associated to genital tract disease, infertility and pregnancy failure. Although insights into the mechanistic action of Notch in these several scenarios have been highlighted, the overall picture of Notch is still fragmentary and elusive. Extensive research being presently conducted may reveal even novel and unsuspected branches into the still highly complex modes of action of this signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accialini, P., Hernández, S.F., Bas, D., Pazos, M.C., Irusta, G., Abramovich, D., Tesone, M.: A link between Notch and progesterone maintains the functionality of the rat corpus luteum. Reproduction 149(1), 1–10 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Afshar, Y., Jeong, J., Roqueiro, D., Demayo, F., Lydon, J., Radtke, F., Radnor, R., Miele, L., Fazleabas, A.: Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 26(1), 282–294 (2012a)

    CAS  Google Scholar 

  • Afshar, Y., Miele, L., Fazleabas, A.: Notch1 is regulated by chorionic gonadotropin and progesterone in endometrial stromal cells and modulates decidualization in primates. Endocrinology 153(6), 2884–2896 (2012b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artavanis-Tsakonas, S., Matsuno, K., Fortini, M.: Notch signaling. Science 268(5208), 225–232 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Assa-Kunik, E., Torres, I.L., Schejter, E.D., St Johnston, D., Shilo, B.Z.: Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development (Cambridge, England) 134(6), 1161–1169 (2007)

    Article  CAS  Google Scholar 

  • Baker, S.J., Spears, N.: The role of intra-ovarian interactions in the regulation of follicle dominance. Hum. Reprod. Update 5(2), 153–165 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Batista, F., Lu, L., Williams, S.A., Stanley, P.: Complex N-glycans are essential, but core 1 and 2 mucin o-glycans, o-fucose glycans, and NOTCH1 are dispensable, for mammalian spermatogenesis. Biol. Reprod. 86(6), 179 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellvi, A.R., Cavicchia, J.C., Milletfe, C.F., Brien, D.A.O., Bhatnagar, Y.M., Dym, M.: Spermatogenic cells of the prepuberal mouse isolation and morphological characterization. J. Cell Biol. 74, 68–85 (1977)

    Article  Google Scholar 

  • Benedito, R., Roca, C., Sörensen, I., Adams, S., Gossler, A., Fruttiger, M., Adams, R.H.: The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6), 1124–1135 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe, T., Oswald, F.: The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. CMLS 66(10), 1631–1646 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Bray, S.J.: Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7(9), 678–689 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Cobellis, L., Caprio, F., Trabucco, E., Mastrogiacomo, A., Coppola, G., Manente, L., Colacurci, N., De Falco, M., De Luca, A.: The pattern of expression of Notch protein members in normal and pathological endometrium. J. Anat. 213(4), 464–472 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuman, C., Menkhorst, E., Winship, A., Van Sinderen, M., Osianlis, T., Rombauts, L.J., Dimitriadis, E.: Fetal-maternal communication: the role of Notch signalling in embryo implantation. Reproduction 147(3), 75–86 (2014)

    Article  CAS  Google Scholar 

  • DeFalco, T., Saraswathula, A., Briot, A., Iruela-Arispe, M.L., Capel, B.: Testosterone levels influence mouse fetal leydig cell progenitors through Notch signaling. Biol. Reprod. 88(4), 91 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Degaki, K.Y., Chen, Z., Yamada, A.T., Anne Croy, B.: Delta-like ligand (DLL)1 expression in early mouse decidua and its localization to uterine natural killer cells. PLoS ONE 7(12), e52037 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirami, G., Ravindranath, N., Achi, M.V., Dym, M.: Expression of Notch pathway components in spermatogonia and Sertoli cells of neonatal mice. J. Androl. 22(6), 944–952 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, L., Kaftanovskaya, E.M., Manresa, C., Barbara, A.M., Poppiti, R.J., Tan, Y., Agoulnik, A.I.: Constitutive Notch signaling causes abnormal development of the oviducts, abnormal angiogenesis, and cyst formation in mouse female reproductive tract. Biol. Reprod. 94(3), 67, 1–12 (2016)

    Google Scholar 

  • Fischer, A., Gessler, M.: Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey BHLH factors. Nucleic Acids Res. 35(14), 4583–4596 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, H.M., Hastings, J.M., Allan, D., Morris, K.D., Rudge, J.S., Wiegand, S.J.: Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology 153, 1–12 (2012)

    Article  CAS  Google Scholar 

  • Fraser, H.M., Wilson, H., Morris, K.D., Swanston, I., Wiegand, S.J.: Vascular endothelial growth factor Trap suppresses ovarian function at all stages of the luteal phase in the macaque. J. Clin. Endocrinol. Metab. 90(10), 5811–5818 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Fraser, H.M., Wilson, H., Wulff, C., Rudge, J.S., Wiegand, S.J.: Administration of vascular endothelial growth factor Trap during the ‘post-angiogenic’ period of the luteal phase causes rapid functional luteolysis and selective endothelial cell death in the marmoset. Reproduction (Cambridge, England) 132(4), 589–600 (2006)

    Article  CAS  Google Scholar 

  • García-Pascual, C.M., Zimermann, R.C., Ferrero, H., Shawber, C.J., Kitajewski, J., Simón, C., Pellicer, A., Gómez, R.: Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells. Fertil. Steril. 100(6), 1768–1776 (2013)

    Article  PubMed  CAS  Google Scholar 

  • Garcia, T.X., Defalco, T., Capel, B., Hofmann, M.C.: Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Dev. Biol. 377(1), 188–201 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, T.X., Parekh, P., Gandhi, P., Sinha, K., Hofmann, M.-C.: The NOTCH ligand JAG1 regulates GDNF expression in Sertoli cells. Stem Cells Dev. 26(8), 585–598 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, K.L., Beres, B., Rowton, M.J., Skinner, M.K., Chang, Y., Rawls, A., Wilson-Rawls, J.: A deficiency of lunatic fringe is associated with cystic dilation of the rete testis. Reproduction 137(1), 79–93 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, K., Okamura, Y., Saga, Y.: Notch signaling in Sertoli cells regulates cyclical gene expression of Hes1 but is dispensable for mouse spermatogenesis. Mol. Cell. Biol. 32(1), 206–215 (2011)

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Kageyama, Y., Ishizaka, K., Xia, G., Kihara, K., Oshima, H.: Requirement of Notch 1 and its ligand jagged 2 expressions for spermatogenesis in rat and human testes. J. Androl. 22(6), 999–1011 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T., Yamada, T., Kageyama, Y., Negishi, T., Kihara, K.: Expression failure of the Notch signaling system is associated with the pathogenesis of maturation arrest in male infertility patients. Fertil. Steril. 81(3), 697–699 (2004a)

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T., Yoshinaga, A., Ohno, R., Ishii, N., Kamata, S., Yamada, T.: Expression of the P63 and Notch signaling systems in rat testes during postnatal development: comparison with their expression levels in the epididymis and vas deferens. J. Androl. 25(5), 692–698 (2004b)

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, F., Peluffo, M.C., Stouffer, R.L., Irusta, G., Tesone, M.: Role of the DLL4-NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat. Biol. Reprod. 84(5), 859–865 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Z., Rivas, B., Agoulnik, A.I.: NOTCH1 gain of function in germ cells causes failure of spermatogenesis in male mice. PLoS ONE 8(7), e71213 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huanga, B., Butlera, R., Miaoa, Y., Daia, Y., Wua, W., Sua, W., Fujii-Kuriyamab, Y., Warnera, M., Gustafssona, J.Å.: Dysregulation of Notch and ERα signaling in AhR−/− male mice. PNAS 113(42), 11883–11888 (2016)

    Article  CAS  Google Scholar 

  • Hubbard, N., Prasasya, R.D., Mayo, K.E.: Activation of Notch signaling by oocytes and Jag1 in mouse ovarian granulosa cells. Endocrinology 160(12), 2863–2876 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Iso, T., Sartorelli, V., Chung, G., Shichinohe, T.: HERP, a new primary target of Notch regulated by ligand binding. Mol. Cell. Biol. 21(17), 6071–6079 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, J., Espinoza, T., McGaughey, R.W., Rawls, A., Wilson-Rawls, J.: Notch pathway genes are expressed in mammalian ovarian follicles. Mech. Dev. 109(2), 355–361 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic, V.P., Sauer, C.M., Shawber, C.J., Gomez, R., Wang, X., Sauer, M.V., Kitajewski, J., Zimmermann, R.C.: Intraovarian regulation of gonadotropin-dependent folliculogenesis depends on Notch receptor signaling pathways not involving delta-like ligand 4 (Dll4). Reprod. Biol. Endocrinol. 11(1), 43 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminska, A., Pardyak, L., Marek, S., Wrobel, K., Kotula-Balak, M., Bilinska, B., Hejmej, A.: Notch signaling regulates nuclear androgen receptor AR and membrane androgen receptor ZIP9 in mouse Sertoli cells. Andrology, 1–16 (2019). https://doi.org/10.1111/andr.12691

  • Kimble, J., Crittenden, S.L.: Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 23, 405–433 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Kitadate, Y.: Notch and Egfr signaling act antagonistically to regulate germ-line stem cell niche formation in Drosophila male embryonic gonads. Proc. Natl. Acad. Sci. 107(32), 14241–14246 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto, T., Takahashi, K., Takimoto, H., Tomizuka, K., Hayasaka, M., Tabira, T., Hanaoka, K.: Functional redundancy of the Notch gene family during mouse embryogenesis: analysis of Notch gene expression in Notch3-deficient mice. Biochem. Biophys. Res. Commun. 331(4), 1154–1162 (2005)

    Article  CAS  PubMed  Google Scholar 

  • López-schier, H., St Johnston, D.: Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev. 15(11), 1393–1405 (2001)

    Article  PubMed  Google Scholar 

  • Lu, J., Ye, X., Fan, F., Xia, L., Bhattacharya, R., Bellister, S., Tozzi, F., Sceusi, E., Zhou, Y., Tachibana, I., Maru, D.M., Hawke, D.H., Rak, J., Mani, S.A., Zweidler-McKay, P., Ellis, L.M.: Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23(2), 171–185 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupien, M., Diévart, A., Morales, C.R., Hermo, L., Calvo, E., Kay, D.G., Hu, C., Jolicoeur, P.: Expression of constitutively active Notch1 in male genital tracts results in ectopic growth and blockage of efferent ducts, epididymal hyperplasia and sterility. Dev. Biol. 300(2), 497–511 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Mazella, J., Liang, S., Tseng, L.: Expression of delta-like protein 4 in the human endometrium. Endocrinology 149(1), 15–19 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Mikhailik, A., Mazella, J., Liang, S., Tseng, L.: Notch ligand-dependent gene expression in human endometrial stromal cells. Biochem. Biophys. Res. Commun. 388(3), 479–482 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Mori, S., Kadokawa, Y., Hoshinaga, K., Marunouchi, T.: Sequential activation of Notch family receptors during mouse spermatogenesis. Dev. Growth Differ. 45(1), 7–13 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Murta, D., Batista, M., Silva, E., Trindade, A., Henrique, D., Duarte, A., Lopes-da-Costa, L.: Notch signaling in the epididymal epithelium regulates sperm motility and is transferred at a distance within epididymosomes. Andrology 4(2), 314–327 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Murta, D., Batista, M., Trindade, A., Silva, E., Mateus, L., Duarte, A., Lopes-da-Costa, L.: Dynamics of Notch signalling in the mouse oviduct and uterus during the oestrous cycle. Reprod. Fertil. Dev. 28(11), 1663–1678 (2015)

    Article  CAS  Google Scholar 

  • Murta, D., Batista, M., Silva, E., Trindade, A., Henrique, D., Duarte, A., Lopes-da-Costa, L.: Dynamics of Notch pathway expression during mouse testis post-natal development and along the spermatogenic cycle. PLoS ONE 8(8), e72767 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murta, D., Batista, M., Silva, E., Trindade, A., Mateus, A., Duarte, A., Lopes-da-Costa, L.: Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle. Reprod. Fertil. Dev. 27(7), 1038–1048 (2014a)

    Article  CAS  Google Scholar 

  • Murta, D., Batista, M., Trindade, A., Silva, E., Henrique, D., Duarte, A., Lopes-da-Costa, L.: In vivo Notch signaling blockade induces abnormal spermatogenesis in the mouse. PLoS ONE 9(11), e113365 (2014b)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nebel, B.R., Amarose, A.P., Hacket, E.M.: Calendar of gametogenic development in the prepuberal male mouse. Science 134(3482), 832–833 (1961)

    Google Scholar 

  • Ohtsuka, T., Ishibashi, M., Gradwohl, G., Nakanishi, S., Guillemot, F., Kageyama, R.: Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J. 18(8), 2196–2207 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, R., Hara, T., Sato, T., Kojima, N., Nishina, Y.: The mechanism and control of Jagged1 expression in Sertoli cells. Regen. Ther. 3, 75–81 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Okuda, H., Kiuchi, H., Takao, T., Miyagawa, Y., Tsujimura, A., Nonomura, N., Miyata, H., Okabe, M., Ikawa, M., Kawakami, Y., Goshima, N., Wada, M., Tanaka, H.: A novel transcriptional factor Nkapl is a germ cell-specific suppressor of Notch signaling and is indispensable for spermatogenesis. PLoS ONE 10(4), e0124293 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pepling, M.E., Spradling, A.C.: Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234(2), 339–351 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Pepling, M.E.: Follicular assembly: mechanisms of action. Reproduction 143(2), 139–149 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Prasasya, R.D., Mayo, K.E.: Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells. Endocrinology 159(1), 184–198 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Sahin, Z., Bayram, Z., Celik-Ozenci, C., Akkoyunlu, G., Seval, Y., Erdogru, T., Ustunel, I., Baykara, M., Demir, R.: Effect of experimental varicocele on the expressions of Notch 1, 2, and 3 in rat testes: an immunohistochemical study. Fertil. Steril. 83(1), 86–94 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Sheldon, H., Heikamp, E., Turley, H., Dragovic, R., Thomas, P., Oon, C.E., Leek, R., Edelmann, M., Kessler, B., Sainson, R.C., Sargent, I., Li, J.L., Harris, A.L.: New mechanism for Notch signaling to endothelium at a distance by delta-like 4 incorporation into exosomes. Blood 116(13), 2385–2394 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, K., Chiba, S., Saito, T., Kumano, K., Hamada, Y., Hirai, H.: Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem. Biophys. Res. Commun. 291(4), 775–779 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Song, X., Call, G.B., Kirilly, D., Xie, T.: Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development (Cambridge, England) 134(6), 1071–1080 (2007)

    Article  CAS  Google Scholar 

  • Stahl, M., Uemura, K., Ge, C., Shi, S., Tashima, Y., Stanley, P.: Roles of Pofut1 and O-fucose in mammalian Notch signaling. J. Biol. Chem. 283(20), 13638–13651 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, R.W., Strug, M.R., Jeong, J.W., Miele, L., Fazleabas, A.T.: Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc. Natl. Acad. Sci. U.S.A. 113(8), 2300–2305 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, H., Brennan, J., Karl, J., Hamada, Y., Raetzman, L., Capel, B.: Notch signaling maintains leydig progenitor cells in the mouse testis. Development 135(22), 3745–3753 (2008)

    CAS  Google Scholar 

  • Tanriverdi, G., Denir, S., Ayla, S., Bilir, A., Oktar, H., Cepni, I., Irez, T.: Notch signaling pathway in cumulus cells can be a novel marker to identify poor and normal responder IVF patients. J. Assist. Reprod. Genet. 30(10), 1319–1326 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Trombly, D.J., Woodruff, T.K., Mayo, K.E.: Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology 150(2), 1014–1024 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Uyttendaele, H., Marazzi, G., Wu, G., Yan, Q., Sassoon, D.: Notch4/Int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122(7), 2251–2259 (1996)

    CAS  PubMed  Google Scholar 

  • Vanorny, D.V., Mayo, K.E.: The role of Notch signaling in the mammalian ovary. Reproduction 153(6), 187–204 (2017)

    Article  Google Scholar 

  • Vorontchikhina, M.A., Zimmermann, R.C., Shawber, C.J., Tang, H., Kitajewski, J.: Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation. Gene Expr. Patterns GEP 5(5), 701–709 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Shao, L., Shi, S., Harris, R.J., Spellman, M.W., Stanley, P., Haltiwanger, R.S.: Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a Novel GDP-fucose protein O-fucosyltransferase. J. Biol. Chem. 276(43), 40338–40345 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Ward, E.J., Shcherbata, H.R., Reynolds, S.H., Fischer, K.A., Hatfield, S.D., Ruohola-Baker, H.: Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr. Biol. CB 16(23), 2352–2358 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Wulff, C., Wilson, H., Wiegand, S.J., Rudge, J.S., Fraser, H.M.: Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 143(7), 2797–2807 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Gridley, T.: Notch2 Is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol. 11(1), 11–13 (2013)

    Article  CAS  Google Scholar 

  • Yuan, Z., Friedmann, D.R., Vanderwielen, B.D., Collins, K.J., Kovall, R.A.: Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2. J. Biol. Chem. 287(42), 34904–34916 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, C., Younger-Shepherd, S., Jan, L.Y., Jan, Y.N.: Delta and serrate are redundant Notch ligands required for asymmetric cell divisions within the Drosophila sensory organ lineage. Genes Dev. 12(8), 1086–1091 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C.-P., Yang, J.-L., Zhang, J., Li, L., Huang, L., Ji, S.-Y., Hu, Z.-Y., Gao, F., Liu, Y.-X.: Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology 152(6), 2437–2447 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, R.C., Hartman, T., Kavic, S., Pauli, S.A., Bohlen, P., Sauer, M.V., Kitajewski, J.: Vascular endothelial growth factor receptor 2 – mediated angiogenesis is essential for gonadotropin-dependent follicle development. J. Clin. Invest. 112(5), 659–669 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors’ studies cited in this article were funded by Projects PTDC/CVT/105022/2008, UID/CVT/276/2013 and UIDB/00276/2020 from Foundation for Science and Technology (FCT). Elisabete Silva and Alexandre Trindade are funded by FCT (DL462 57/2016/CP1438/CT0001 and DL 57/2016/CP1438/CT0005, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lopes-da-Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murta, D., Silva, E., Trindade, A., Henrique, D., Duarte, A., Lopes-da-Costa, L. (2020). Unraveling Notch Signaling in Reproductive Biology. In: Freitas Duarte, A., Lopes da Costa, L. (eds) Advances in Animal Health, Medicine and Production . Springer, Cham. https://doi.org/10.1007/978-3-030-61981-7_21

Download citation

Publish with us

Policies and ethics