Skip to main content

Analysis of Path-Dependent Damage and Microstructure Evolution for Numerical Analysis of Sheet-Bulk Metal Forming Processes

  • Conference paper
  • First Online:
Sheet Bulk Metal Forming (TCRC73 2020)

Abstract

Sheet-bulk forming processes are applied to manufacture complex components with intricate shape elements or with large variations in wall thickness from sheet metals. Accumulated plastic strains achieved in sheet-bulk metal forming are substantially larger than in conventional sheet metal forming. Differing from sheet forming, the stress state is three-dimensional for these processes due to the thick sheets and process kinematics. Due to these specific process conditions, conventional methods to predict failure in sheet forming such as forming limit curves are not sufficient. Thus, process analysis as well as characterisation of microstructural and mechanical properties for a prediction of properties affecting failure of formed components require other methods. Application of constitutive models for damage computation allows predicting the onset of failure during forming operations. Moreover, even before failure, the mechanical properties, i.e. the elastic stiffness of components, are affected by the evolution of voids. Previous research did not focus on the comparison of different model strategies with respect to the accuracy of predictions and the necessary strategy for parameter identification and validation. This contribution demonstrates that a Gurson-type model, which relied on high-resolution microstructural data, provided the best prediction of failure for a local indentation and sheet upsetting. Suited preparation methods were developed to analyse small voids in the nanometre range. A novel fracture criterion is shown to offer the best compromise of identification effort, implementation effort and accuracy. The assessment of the effect of void evolution on component properties is an important aspect. Different non-destructive methods were validated based on measurements of resonance frequency and propagation velocity. A quantitative relation between the measured void area fraction and the elastic properties was established for components relevant for sheet-bulk metal forming. A testing procedure to determine the performance of components under elevated strain rates was evaluated and the prediction capacity of different modelling approaches with respect to the strain rate sensitivity was compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM E1876-09 Test Method for Dynamic Youngs Modulus, Shear Modulus, and Poissons Ratio by Impulse Excitation of Vibration 81.060.20(E1876-09) (2009)

    Google Scholar 

  2. Behrens, B.A., Bouguecha, A., Vucetic, M., Hübner, S., Rosenbusch, D., Koch, S.: Numerical and experimental investigations of multistage sheet-bulk metal forming process with compound press tools. Key. Eng. Mat. 651–653, 1153–1158 (2015). https://doi.org/10.4028/www.scientific.net/KEM.651-653.1153

    Article  Google Scholar 

  3. Besserer, H.-B., Gerstein, G., Dalinger, A., Jablonik, L., Rodman, D., Nürnberger, F.: Ion beam processing in the sample preparation for the analysis of ductile damage in deep drawing steels. Prakt. Metallogr. 53, 221–236 (2016). https://doi.org/10.3139/147.110377

    Article  Google Scholar 

  4. Chu, C.C., Needleman, A.: Void Nucleation Effects in Biaxially Stretched Sheets. J. Eng. Mater. Technol. 102, 249–256 (1980). https://doi.org/10.1115/1.3224807

    Article  Google Scholar 

  5. Clausmeyer, T., Svendsen, B.: Comparison of two models for anisotropic hardening and yield surface evolution in bcc sheet steels. Eur. J. Mech. A-Solids 54, 120–131 (2015). https://doi.org/10.1016/j.euromechsol.2015.05.016

    Article  MathSciNet  MATH  Google Scholar 

  6. Clausmeyer, T., Gutknecht, F., Gerstein, G., Nürnberger, F.: Testing of formed gear wheels at quasi-static and elevated strain rates. Procedia Manufact. 47, 623–628 (2020). https://doi.org/10.1016/j.promfg.2020.04.191

    Article  Google Scholar 

  7. Dassault Systèmes SIMULIA User Assistance 2019: Abaqus. https://help.3ds.com. Accessed 26 Apr 2019

  8. Faßmann, D.: Beitrag zur wechselseitigen Beeinflussung von Mikrostruktur und Blechmassivumformprozess. Berichte aus dem IW, vol. 2014, 1. PZH-Verl., Garbsen (2014)

    Google Scholar 

  9. Fayolle, S., Bouchard, P.O., Mocellin, K.: 6-Modelling the strength of self-piercing riveted joints. In: Chrysanthou, A., Sun, X. (eds.) Self-Piercing Riveting, pp. 79–107. Woodhead Publishing, Cambridge (2014)

    Chapter  Google Scholar 

  10. Gachet, J.M., Delattre, G., Bouchard, P.O.: Improved fracture criterion to chain forming stage and in use mechanical strength computations of metallic parts – application to half-blanked components. J. Mater. Proc. Technol. 216, 260–277 (2015). https://doi.org/10.1016/j.jmatprotec.2014.09.006

    Article  Google Scholar 

  11. Gerstein, G., Bruchanov, A.A., Dyachok, D.V., Nürnberger, F.: The effect of texture in modeling deformation processes of bcc steel sheets. Mater. Lett. 164, 356–359 (2016). https://doi.org/10.1016/j.matlet.2015.11.007

    Article  Google Scholar 

  12. Gerstein, G., Clausmeyer, T., Isik, K., Nürnberger, F., Tekkaya, A.E., Bruchanov, A.A., Maier, H.J.: Experimental analysis of anisotropic damage in dual-phase steel by resonance measurement. Int. J. Damage Mech 26, 1147–1169 (2017). https://doi.org/10.1177/1056789516650245

    Article  Google Scholar 

  13. Gerstein, G., Isik, K., Gutknecht, F., Sieczkarek, P., Ewert, J., Tekkaya, A.E., Clausmeyer, T., Nürnberger, F.: Microstructural characterization and simulation of damage for geared sheet components. J. Phys: Conf. Ser. 896, 12076 (2017). https://doi.org/10.1088/1742-6596/896/1/012076

    Article  Google Scholar 

  14. Gerstein, G., Briukhanov, A., Gutknecht, F., Volchok, N., Clausmeyer, T., Nürnberger, F., Tekkaya, A.E., Maier, H.J.: Evaluation of micro-damage by acoustic methods. Procedia Manufact. 15, 527–534 (2018). https://doi.org/10.1016/j.promfg.2018.07.273

    Article  Google Scholar 

  15. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977). https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  16. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp. 281–297 (1948)

    Google Scholar 

  17. Hirt, G., Tekkaya, A.E., Clausmeyer, T., Lohmar, J.: Potential and status of damage controlled forming processes. Prod. Eng. 14(1), 1–4 (2020). https://doi.org/10.1007/s11740-019-00948-6

    Article  Google Scholar 

  18. Isik, K.: Modelling and characterization of damage and fracture in sheet-bulk metal forming, 1. Auflage. Dortmunder Umformtechnik vol 101. Shaker, Herzogenrath (2018)

    Google Scholar 

  19. Isik, K., Gerstein, G., Clausmeyer, T., Nürnberger, F., Tekkaya, A.E., Maier, H.J.: Evaluation of void nucleation and development during plastic deformation of dual-phase steel DP600. Steel Res. Int. 87, 1583–1591 (2016). https://doi.org/10.1002/srin.201500483

    Article  Google Scholar 

  20. Isik, K., Wernicke, S., Silva, M.B., Martins, P.A., Tekkaya, A.E.: Failure by fracture in sheet–bulk metal forming. J. Strain Anal. Eng. Des. 51, 387–394 (2016). https://doi.org/10.1177/0309324716639773

    Article  Google Scholar 

  21. Isik, K., Gerstein, G., Schneider, T., Schulte, R., Rosenbusch, D., Clausmeyer, T., Nürnberger, F., Vucetic, M., Koch, S., Hübner, S., Behrens, B.-A., Tekkaya, A.E., Merklein, M.: Investigations of ductile damage during the process chains of toothed functional components manufactured by sheet-bulk metal forming. Prod. Eng. Res. Devel. 10(1), 5–15 (2016). https://doi.org/10.1007/s11740-016-0656-9

    Article  Google Scholar 

  22. Isik, K., Yoshida, Y., Chen, L., Clausmeyer, T., Tekkaya, A.E.: Modelling of the blanking process of high-carbon steel using Lemaitre damage model. C.R. Mec. 346, 770–778 (2018). https://doi.org/10.1016/j.crme.2018.05.003

    Article  Google Scholar 

  23. Kadkhodapour, J., Butz, A., Rad, S.Z: Mechanisms of void formation during tensile testing in a commercial dual phase steel. Acta Materialia 59, 2575–2588 (2011)

    Google Scholar 

  24. Ko, Y.K., Lee, J.S., Huh, H., Kim, H.K., Park, S.H.: Prediction of fracture in hub-hole expanding process using a new ductile fracture criterion. J. Mater. Proc. Technol. 187–188, 358–362 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.071

    Article  Google Scholar 

  25. Ladeveze, P., Lemaitre, J.: Damage effective stress in quasi unilateral conditions. In: Proceedings of the 16th International Congress of Theoretical and Applied Mechanics (1984)

    Google Scholar 

  26. Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969). https://doi.org/10.1115/1.3564580

    Article  MATH  Google Scholar 

  27. Lemaitre, J.: A Course on Damage Mechanics, Second Revised and Enlarged Edition. Springer, Berlin (1996)

    Google Scholar 

  28. Lou, Y., Huh, H., Lim, S., Pack, K.: New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int. J. Solids Struct. 49, 3605–3615 (2012). https://doi.org/10.1016/j.ijsolstr.2012.02.016

    Article  Google Scholar 

  29. McClintock, F.A.: A criterion for ductile fracture by the growth of holes. J. Appl. Mech. 35, 363–371 (1964). https://doi.org/10.1115/1.3601204

    Article  Google Scholar 

  30. Merklein, M., Allwood, J.M., Behrens, B.A., Brosius, A., Hagenah, H., Kuzman, K., Mori, K., Tekkaya, A.E., Weckenmann, A.: Bulk forming of sheet metal. CIRP Ann. 61, 725–745 (2012). https://doi.org/10.1016/j.cirp.2012.05.007

  31. Merklein, M., Plettke, R., Schneider, T., Opel, S., Vipavc, D.: Manufacturing of sheet metal components with variants using process adapted semi-finished products. KEM 504–506, 1023–1028 (2012). https://doi.org/10.4028/www.scientific.net/KEM.504-506.1023

  32. Merklein, M., Lechner, M., Gröbel, D., Löffler, M., Schneider, T., Schulte, R., Hildenbrand, P.: Innovative approaches for controlling the material flow in sheet-bulk metal forming processes. Manufact. Rev. 3, 2 (2016). https://doi.org/10.1051/mfreview/2016001

    Article  Google Scholar 

  33. Mori, K., Nakano, T.: State-of-the-art of plate forging in Japan. Prod. Eng. 10(1), 81–91 (2015). https://doi.org/10.1007/s11740-015-0648-1

    Article  Google Scholar 

  34. Mori, K., Abe, Y., Osakada, K., Hiramatsu, S.: Plate forging of tailored blanks having local thickening for deep drawing of square cups. J. Mater. Process. Tech. 211, 1569–1574 (2011). https://doi.org/10.1016/j.jmatprotec.2011.04.010

    Article  Google Scholar 

  35. Mulholland, H., Phillips, J.H.G.: Applied Mathematics for Advanced Level. The mechanics of particles and rigid bodies, 2. ed. Butterworths (1984)

    Google Scholar 

  36. Nahshon, K., Hutchinson, J.W.: Modification of the Gurson Model for shear failure. Eur. J. Mech. A-Solids 27, 1–17 (2008). https://doi.org/10.1016/j.euromechsol.2007.08.002

    Article  MATH  Google Scholar 

  37. Novella, M.F., Ghiotti, A., Bruschi, S., Bariani, P.F.: Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars. J. Mater. Proc. Technol. 222, 259–267 (2015). https://doi.org/10.1016/j.jmatprotec.2015.01.030

    Article  Google Scholar 

  38. Pineau, A., Benzerga, A.A., Pardoen, T.: Failure of metals I: brittle and ductile fracture. Acta Mater. 107, 424–483 (2016). https://doi.org/10.1016/j.actamat.2015.12.034

  39. Chneider, T., Merklein, M.: Manufacturing of geared sheet metal components by a single-stage Sheet-bulk metal forming process. In: Proceedings of Conference Competitive Manufacturing, pp. 177–182 (2013)

    Google Scholar 

  40. Sieczkarek, P., Kwiatkowski, L., Ben Khalifa, N., Tekkaya, A.E.: Novel five-axis forming press for the incremental sheet-bulk metal forming. Key. Eng. Mat. 554–557, 1478–1483 (2013). https://doi.org/10.4028/www.scientific.net/KEM.554-557.1478

  41. Sieczkarek, P., Isik, K., Khalifa, N.B., Martins, P.A.F., Tekkaya, A.E.: Mechanics of sheet-bulk indentation. J. Mater. Proc. Technol. 214, 2387–2394 (2014). https://doi.org/10.1016/j.jmatprotec.2014.05.018

  42. Sieczkarek, P., Wernicke, S., Gies, S., Martins, P.A.F., Tekkaya, A.E.: Incipient and repeatable plastic flow in incremental sheet-bulk forming of gears. Int. J. Adv. Manufact. Technol. 86, 3091–3100 (2016) https://doi.org/10.1007/s00170-016-8442-6

  43. Soyarslan, C., Tekkaya, A.E.: Finite deformation plasticity coupled with isotropic damage: formulation in principal axes and applications. Finite Elem. Anal. Des. 46, 668–683 (2010). https://doi.org/10.1016/j.finel.2010.03.006

  44. Soyarslan, C., Gharbi, M.M., Tekkaya, A.E.: A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steel. Int. J. Solids Struct. 49, 1608–1626 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.009

  45. Stroh, A.N.: Crack nucleation in body-cenered cubic metals. In: Proceedings of the Conference of Fracture. Wiley, pp 117–122 (1959)

    Google Scholar 

  46. Strutt, J.W.: The Theory of Sound. vol. 1. Cambridge library collection. Physical Sciences. Cambridge University Press, Cambridge (1877)

    Google Scholar 

  47. Suárez, F., Sket, F., Gálvez, C.J., Cendón, A.D., Atienza, M.J., Molina-Aldareguia, J.: The evolution of internal damage identified by means of X-ray computed Tomography in two steels and the ensuing relation with Gurson’s numerical modelling. Metals 9, 292 (2019). https://doi.org/10.3390/met9030292

  48. Tasan, C.C.; Hoefnagels, J.P.M., Geers, M.G.D.: A brittle-fracture methodology for three-dimensional visualization of ductile deformation micromechanisms. Scripta Mater. 61, 20–23 (2009) https://doi.org/10.1016/j.scriptamat.2009.02.049

  49. Tekkaya, A.E., Soyarslan, C., Isik, K., doig, M.: Entwicklung eines anwenderorientierten Versagensmodells für die Blechumformsimulation höchstfester Stahlwerkstoffe (P 853). Stahlbau 84, 434 (2015). https://doi.org/10.1002/stab.201590059

  50. Tekkaya, A.E.; Bouchard, P.-O., Bruschi, S., Tasan, C.C.: Damage in metal forming. CIRP Ann. Manufact. Technol. 69(2), 600–623 (2020)

    Google Scholar 

  51. Thuillier, S., Manach, P.Y., Menezes, L.F.: Occurence of strain path changes in a two-stage deep drawing process. J. Mater. Proc. Technol. 210, 226–232 (2010)

    Article  Google Scholar 

  52. Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984). https://doi.org/10.1016/0001-6160(84)90213-x

    Article  Google Scholar 

  53. Wernicke, S., Sieczkarek, P., Martins, P.A.F., Tekkaya, A.E.: Local sheet thickening by in-plane swaging. Int. J. Mech. Sci. 119, 59–67 (2016). https://doi.org/10.1016/j.ijmecsci.2016.10.003

    Article  Google Scholar 

  54. Wernicke, S., Hahn, M., Gerstein, G., Nürnberger, F., Tekkaya, A.E.: Strain path dependency in incremental sheet-bulk metal forming. Int. J. Mater. Form. 90, 3585 (2020). https://doi.org/10.1007/s12289-020-01537-0

Download references

Acknowledgment

This study was supported by the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre for sheet-bulk metal forming (TCRC 73, Subproject C4) under grant number 68237143 and 116969364, respectively. GG, FN and HJM highly acknowledge DFG funding (Grant No. 316923185) for the Xradia 520 Versa used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Gutknecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutknecht, F. et al. (2021). Analysis of Path-Dependent Damage and Microstructure Evolution for Numerical Analysis of Sheet-Bulk Metal Forming Processes. In: Merklein, M., Tekkaya, A.E., Behrens, BA. (eds) Sheet Bulk Metal Forming . TCRC73 2020. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-61902-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61902-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61901-5

  • Online ISBN: 978-3-030-61902-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics