Skip to main content

PDE Methods in Random Matrix Theory

  • Chapter
  • First Online:
Harmonic Analysis and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 168))

Abstract

This article begins with a brief review of random matrix theory, followed by a discussion of how the large-N limit of random matrix models can be realized using operator algebras. I then explain the notion of “Brown measure,” which play the role of the eigenvalue distribution for operators in an operator algebra.

I then show how methods of partial differential equations can be used to compute Brown measures. I consider in detail the case of the circular law and then discuss more briefly the case of the free multiplicative Brownian motion, which was worked out recently by the author with Driver and Kemp.

Supported in part by a Simons Foundation Collaboration Grant for Mathematicians

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.D. Bai, Circular law. Ann. Probab. 25, 494–529 (1997)

    Google Scholar 

  2. P. Biane, On the free convolution with a semi-circular distribution. Indiana Univ. Math. J. 46, 705–718 (1997)

    Article  MathSciNet  Google Scholar 

  3. P. Biane, Free Brownian motion, free stochastic calculus and random matrices, in Free Probability Theory, Waterloo, 1995. Fields Institute Communications, vol. 12 (American Mathematical Society, Providence, 1997), pp. 1–19

    Google Scholar 

  4. P. Biane, Segal–Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal. 144, 232–286 (1997)

    Article  MathSciNet  Google Scholar 

  5. P. Biane, R. Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Related Fields 112, 373–409 (1998)

    Article  MathSciNet  Google Scholar 

  6. P. Bourgade, J.P. Keating, Quantum chaos, random matrix theory, and the Riemann ζ-function, in Chaos. Progress in Mathematical Physics, vol. 66 (Birkhäuser/Springer, Basel, 2013), pp. 125–168

    Google Scholar 

  7. L.G. Brown, Lidskiı̆’s theorem in the type II case, in Geometric Methods in Operator Algebras, Kyoto, 1983. Pitman Research Notes in Mathematics Series, vol. 123 (Longman Scientific & Technical, Harlow, 1986), pp. 1–35

    Google Scholar 

  8. G. Cébron, Free convolution operators and free Hall transform. J. Funct. Anal. 265, 2645–2708 (2013)

    Article  MathSciNet  Google Scholar 

  9. B.K. Driver, B.C. Hall, T. Kemp, The large-N limit of the Segal–Bargmann transform on \(\mathbb {U}_{N}\). J. Funct. Anal. 265, 2585–2644 (2013)

    Google Scholar 

  10. B.K. Driver, B.C. Hall, T. Kemp, The Brown measure of the free multiplicative Brownian motion, preprint arXiv:1903.11015 [math.PR] (2019)

    Google Scholar 

  11. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. (American Mathematical Society, Providence, 2010), xxii+749pp

    Google Scholar 

  12. O. Feldheim, E. Paquette, O. Zeitouni, Regularization of non-normal matrices by Gaussian noise. Int. Math. Res. Not. IMRN 18, 8724–8751 (2015)

    Article  MathSciNet  Google Scholar 

  13. B. Fuglede, R.V. Kadison, On determinants and a property of the trace in finite factors. Proc. Nat. Acad. Sci. U. S. A. 37, 425–431 (1951)

    Article  MathSciNet  Google Scholar 

  14. B. Fuglede, R.V. Kadison, Determinant theory in finite factors. Ann. Math. (2) 55, 520–530 (1952)

    Google Scholar 

  15. J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  MathSciNet  Google Scholar 

  16. V.L. Girko, The circular law. (Russian) Teor. Veroyatnost. i Primenen. 29, 669–679 (1984)

    Google Scholar 

  17. L. Gross, P. Malliavin, Hall’s transform and the Segal–Bargmann map, in Itô’s Stochastic Calculus and Probability Theory, ed. by N. Ikeda, S. Watanabe, M. Fukushima, H. Kunita (Springer, Tokyo, 1996), pp. 73–116

    Chapter  Google Scholar 

  18. E. Gudowska-Nowak, R.A. Janik, J. Jurkiewicz, M.A. Nowak, Infinite products of large random matrices and matrix-valued diffusion. Nuclear Phys. B 670, 479–507 (2003)

    Article  MathSciNet  Google Scholar 

  19. A. Guionnet, P.M. Wood, O. Zeitouni, Convergence of the spectral measure of non-normal matrices. Proc. Am. Math. Soc. 142, 667–679 (2014)

    Article  MathSciNet  Google Scholar 

  20. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics. Interdisciplinary Applied Mathematics, vol. 1 (Springer, New York, 1990)

    Google Scholar 

  21. B.C. Hall, The Segal–Bargmann “coherent state” transform for compact Lie groups. J. Funct. Anal. 122, 103–151 (1994)

    Article  MathSciNet  Google Scholar 

  22. B.C. Hall, Harmonic analysis with respect to heat kernel measure. Bull. Am. Math. Soc. (N.S.) 38, 43–78 (2001)

    Google Scholar 

  23. B.C. Hall, Quantum Theory for Mathematicians. Graduate Texts in Mathematics, vol. 267 (Springer, New York, 2013)

    Google Scholar 

  24. B.C. Hall, Lie Groups, Lie Algebras, and Representations. An Elementary Introduction. Graduate Texts in Mathematics, vol. 222, 2nd edn. (Springer, Cham, 2015)

    Google Scholar 

  25. B.C. Hall, The Segal–Bargmann transform for unitary groups in the large-N limit, preprint arXiv:1308.0615 [math.RT] (2013)

    Google Scholar 

  26. B.C. Hall, T. Kemp, Brown measure support and the free multiplicative Brownian motion. Adv. Math. 355, article 106771, 1–36 (2019)

    Google Scholar 

  27. N.J. Higham, Functions of Matrices. Theory and Computation. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2008)

    Google Scholar 

  28. C.-W. Ho, The two-parameter free unitary Segal-Bargmann transform and its Biane-Gross-Malliavin identification. J. Funct. Anal. 271, 3765–3817 (2016)

    Article  MathSciNet  Google Scholar 

  29. C.-W. Ho, P. Zhong, Brown Measures of free circular and multiplicative Brownian motions with probabilistic initial point, preprint arXiv:1908.08150 [math.OA] (2019)

    Google Scholar 

  30. N.M. Katz, P. Sarnak, Zeroes of zeta functions and symmetry, Bull. Am. Math. Soc. (N.S.) 36, 1–26 (1999)

    Google Scholar 

  31. T. Kemp, The large-N limits of Brownian motions on \(\mathbb {G}\mathbb {L}_{N}\). Int. Math. Res. Not. 2016, 4012–4057 (2016)

    Google Scholar 

  32. R. Lohmayer, H. Neuberger, T. Wettig, Possible large-N transitions for complex Wilson loop matrices. J. High Energy Phys. 2008(11), 053, 44pp (2008)

    Google Scholar 

  33. M.L. Mehta, Random Matrices. Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. (Elsevier/Academic Press, Amsterdam, 2004)

    Google Scholar 

  34. J.A. Mingo, R. Speicher, Free Probability and Random Matrices. Fields Institute Monographs, vol. 35 (Springer/Fields Institute for Research in Mathematical Sciences, New York/Toronto, 2017)

    Google Scholar 

  35. H.L. Montgomery, The pair correlation of zeros of the zeta function. Analytic number theory. (Proceedings of Symposia in Pure Mathematics, vol. XXIV, St. Louis University, St. Louis, 1972) (American Mathematical Society, Providence, 1973), pp. 181–193

    Google Scholar 

  36. A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335 (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  37. W. Rudin, Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. (McGraw-Hill Book Co., New York/Auckland/Düsseldorf, 1976)

    Google Scholar 

  38. P. Śniady, Random regularization of Brown spectral measure. J. Funct. Anal. 193, 291–313 (2002)

    Article  MathSciNet  Google Scholar 

  39. H.-J. Stöckmann, Quantum Chaos. An Introduction (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  40. T. Tao, Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132 (American Mathematical Society, Providence, 2012)

    Google Scholar 

  41. D. Voiculescu, Symmetries of some reduced free product C -algebras, in Operator Algebras and Their Connections with Topology and Ergodic Theory, Buşteni, 1983. Lecture Notes in Mathematics, vol. 1132 (Springer, Berlin, 1985), pp. 556–588

    Google Scholar 

  42. D. Voiculescu, Limit laws for random matrices and free products. Invent. Math. 104, 201–220 (1991)

    Article  MathSciNet  Google Scholar 

  43. E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. (2) 62, 548–564 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, B.C. (2021). PDE Methods in Random Matrix Theory. In: Rassias, M.T. (eds) Harmonic Analysis and Applications. Springer Optimization and Its Applications, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-030-61887-2_5

Download citation

Publish with us

Policies and ethics