Skip to main content

Elimination of Incorrect Depth Points for Depth Completion

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

  • 1951 Accesses

Abstract

Commodity-level scan cameras generally capture RGB-D image with depth missing or incorrect depth points if the surface of the object is transparent, bright, or black. These incorrect depth points are generated randomly and limit the downstream applications of raw RGB-D images. In this paper, we propose a coarse-to-fine method to detect and eliminate the incorrect depth points via RGB semantics. In our flowchart, deep learning-based networks are applied to predict the potential regions with incorrect depth points and the normals of the point cloud. Then we develop a three-step elimination method to remove the incorrect depth points in the regions. Experimental results show that our method leads to great improvements for downstream applications of RGB-D images, especially in depth completion application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C., D.H., Kannala, J., Heikkila, J.: Joint depth and color camera calibrationwith distortion correction. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 2058–2064 (2012).https://doi.org/10.1109/tpami.2012.125

  2. Chan, D., Buisman, H., Theobalt, C., Thrun, S.: A noise-aware filter for real-time depth upsampling (2008)

    Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Diebel, J., Thrun, S.: An application of Markov random fields to range sensing. In: Weiss, Y., Schölkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 291–298. MIT Press (2006)

    Google Scholar 

  5. Huang, Z., Fan, J., Cheng, S., Yi, S., Wang, X., Li, H.: HMS-net: hierarchical multi-scale sparsity-invariant network for sparse depth completion. IEEE Trans. Image Process. 29, 3429–3441 (2020). https://doi.org/10.1109/tpami.2012.125

  6. Jaritz, M., Charette, R.D., Wirbel, E., Perrotton, X., Nashashibi, F.: Sparse and dense data with CNNs: depth completion and semantic segmentation. In: 2018 International Conference on 3D Vision (3DV). IEEE, September 2018. https://doi.org/10.1109/3dv.2018.00017

  7. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. In: ACM SIGGRAPH 2007 Papers on - SIGGRAPH 2007. ACM Press (2007). https://doi.org/10.1145/1275808.1276497

  8. Lachat, E., Macher, H., Landes, T., Grussenmeyer, P.: Assessment and calibration of a RGB-d camera (Kinect v2 sensor) towards a potential use for close-range 3D modeling. Remote Sens. 7(10), 13070–13097 (2015). https://doi.org/10.3390/rs71013070

  9. Liu, J., Gong, X.: Guided depth enhancement via anisotropic diffusion. In: Huet, B., Ngo, C.-W., Tang, J., Zhou, Z.-H., Hauptmann, A.G., Yan, S. (eds.) PCM 2013. LNCS, vol. 8294, pp. 408–417. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03731-8_38

    Chapter  Google Scholar 

  10. Pagliari, D., Pinto, L.: Calibration of Kinect for XBOX one and comparison between the two generations of microsoft sensors. Sensors 15(11), 27569–27589 (2015). https://doi.org/10.3390/Pagliari_2015

  11. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. In: ACM SIGGRAPH 2004 Papers on - SIGGRAPH 2004. ACM Press (2004). https://doi.org/10.1145/1186562.1015777

  12. Schall, O., Belyaev, A., Seidel, H.P.: Feature-preserving non-local denoising of static and time-varying range data. In: Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling - SPM 2007. ACM Press (2007). https://doi.org/10.1145/1236246.1236277

  13. Shan, D.R., Ke, Y.L.: Surface reconstruction from unorganized points based on 2D delaunay neighbors. In: Sui, W. (ed.) Second International Conference on Image and Graphics. SPIE, July 2002. https://doi.org/10.1117/12.477093

  14. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 2017 International Conference on 3D Vision (3DV). IEEE, October 2017. https://doi.org/10.1109/3dv.2017.00012

  15. Wang, X., Zhang, P., Zhang, Y., Ma, L., Kwong, S., Jiang, J.: Deep intensity guidance based compression artifacts reduction for depth map. J. Vis. Commun. Image Represent. 57, 234–242 (2018). https://doi.org/10.1016/j.jvcir.2018.11.008

  16. Yan, S., et al.: DDRNet: depth map denoising and refinement for consumer depth cameras using cascaded CNNs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 155–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_10

    Chapter  Google Scholar 

  17. Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-D image. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018. https://doi.org/10.1109/cvpr.2018.00026

  18. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017. https://doi.org/10.1109/cvpr.2017.537

  19. Zhou, B., et al.: Semantic understanding of scenes through the ADE20k dataset. Int. J. Comput. Vis. 127(3), 302–321, December 2018. https://doi.org/10.1007/s11263-018-1140-0

Download references

Acknowledgement

This work was supported by the Nature Science Fund of Guangdong Province under Grant 2019A1515011793 and NSFC (No.61972160, 51978271, 61962021, 61876065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuhua Xian or Guoliang Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xian, C., Qian, K., Luo, G., Li, G., Lv, J. (2020). Elimination of Incorrect Depth Points for Depth Completion. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics